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Green turtles, Chelonia mydas (L.), are 
found in tropical and subtropical oceans 
worldwide. Currently, they are listed as en-
dangered in the IUCN World Conservation 
Union Red data book (Hilton-Taylor 2000, 
Seminoff 2004). The United States Endan-
gered Species Act of 1978 lists the green turtle 
as endangered in Florida and Pacific Mexico 
and threatened elsewhere in the United States 
( National Marine Fisheries Service and U.S. 
Fish and Wildlife Service 1998a, b). Chelonia 
mydas in the Pacific Ocean includes two mor-
photypes that are very different in appear-
ance, but they are still considered the same 
species even though genetic differences have 
been detected (Dutton et al. 1996, Na
tional Marine Fisheries Service and U.S. Fish 
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Abstract: A diet analysis was conducted on the gastrointestinal contents of 10 
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fisheries. Size distribution of the green turtles ranged from 30 to 70 cm curved 
carapace length (CCL). Prey items found indicated pelagic green turtles to be 
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the water column. Most frequent identifiable prey items were zooplankton, 
pelagic crustaceans, and mollusks (listed in order of frequency of occurrence, 
which ranged from 80% to 40% frequency): Pyrosoma spp., Lepas spp. (goose 
barnacles), amphipods, Carinaria spp. (sea snails), and Cavolinia spp. (sea but-
terflies). Other coelenterates such as salps, ctenophores, and cnidarians ( jelly-
fish) were also identified. Plastics and anthropogenic debris were commonly 
found (70% frequency, mean = 4% of gastrointestinal content by volume). The 
turtles examined consisted of two distinct morphotypes corresponding to the 
central Pacific and the eastern Pacific green turtle populations. Genetic analysis 
confirmed turtles of the central Pacific morphotype to be of Hawaiian origin and 
at least one of the eastern Pacific morphotype turtles to have a mtDNA haplo-
type found in the population nesting in the Revillagigedo archipelago off Mexico. 
Other eastern Pacific morphotypical turtles had a different common Mexican 
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encountered south of Hawai‘i, suggesting a dichotomy in the oceanic distribu-
tion of these two populations. Our records of green turtles as large as 70 cm 
CCL in pelagic waters suggest that some green turtles, mainly those with eastern 
Pacific green turtle morphology and mtDNA haplotype, delay their recruitment 
to nearshore (neritic) habitats or move back and forth between neritic and open 
ocean waters as adults.
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and Wildlife Service 1998b) (Figure 1). The 
lighter-colored morphotype is found world-
wide, and a melanistic form is located mainly 
in the East Pacific (Groombridge and Lux-
moore 1989, National Marine Fisheries 
Service and U.S. Fish and Wildlife Service 
1998a, b).

Hatchling green turtles emerge from their 
nests and enter the oceanic realm. Afterward, 
little is known about their ecological niche 
until they enter nearshore (neritic) benthic 
foraging grounds. According to a number of 
hypotheses, the recently hatched turtles stay 
in the open ocean, and this pelagic phase lasts 
between 5 and 10 yr (Zug et al. 2002, Reich 
et  al. 2007). While in the pelagic phase, all 

turtle species are mainly carnivorous (Daven-
port and Balazs 1991, Parker et al. 2005, 
Reich et al. 2007, Boyle and Limpus 2008). 
However, little is known about C. mydas dur-
ing this phase. It has been assumed that they 
associate with Sargassum drift lines in the 
Atlantic Ocean, similar to loggerhead post-
hatchlings (Caldwell 1963, Carr and Meylan 
1980). However, during a survey conducted 
by Witherington (2002) of juvenile Caretta 
caretta in Florida Current drift lines, no post-
hatchlings of C. mydas were observed. The 
pronounced counter shading of the hatchlings 
suggests that posthatchling C. mydas may 
dwell more in open waters rather than in and 
among algal mats (Bustard 1970, Musick and 

Figure 1. (A) A morphotypical green turtle (C. mydas, Hawaiian Island stranding): oval, light brown to black carapace 
(top) with thick scutes, and cream to yellow plastron ( bottom); (B) green turtle (longline bycatch) displaying the mor-
phological characteristics of an eastern tropical Pacific green turtle: heart-shaped black carapace (top), with thin scutes 
and gray plastron ( bottom).
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lected and saved from six of the 10 samples. 
Full GI tract contents, with stomach contents 
and intestinal contents saved separately, were 
collected from the remaining four turtles. We 
made gross observations of GI contents using 
a dissecting microscope and sorted the con-
tents to the lowest identifiable taxonomic 
level. We identified major fauna and quanti-
fied the volume of each prey group in the 
stomach sample using the displacement meth-
od (Hellawell and Abel 1971). We used only 
data for the stomach samples for statistical 
analyses. Reported average values are fol-
lowed by ±1 standard deviation.

We performed Principal Component 
Analysis and K-Means Clustering (Pearson’s 
correlation, Kruskal-Wallis comparison [two-
tailed] and Levene’s test [ XLSTAT 2010]) to 
compare foraging preferences between the 
CmM morphotype and the ETP morphotype 
(α = .05).

We conducted genetic analysis as described 
in Dutton et al. (2008) on tissue samples to 
obtain mtDNA sequences using the primers 
HDCM2 and LTCM2, designed to target 
488 base pairs ( bp) at the 5′ end of the control 
region of the mitochondrial genome (Lahanas 
et al. 1994). Sequences were aligned against 
reference data from the 384 bp segment of the 
mtDNA control region corresponding to the 
region reported in Dethmers et al. (2006) and 
Dutton et al. (2008) to identify haplotypes 
and assign most likely nesting stock origin.

results

Prey groups, mean percentage volume of 
prey, and frequency of occurrence for each 
prey group are listed in Table 1. The most 
commonly identifiable prey items were Pyro-
soma spp., which we found in 80% of C. mydas 
stomachs, and we found unidentifiable mate-
rial in 80% of all stomachs. One stomach con-
tained 100% Pyrosoma, but among all turtles 
Pyrosoma averaged 35.2% (±42.4%) of the 
total prey volume. The results of the K-Means 
cluster analysis show that Pyrosoma make up 
an individual group, unidentified remains 
make up another individual group, and all 
other prey items are considered a third group 
(P < .0001, α = .5). We also commonly en-

countered Lepas spp. (goose barnacles, 70% 
frequency and 13.7% ± 22.3% by volume). 
We encountered cnidarians less frequently 
( jellyfish, siphonophores; 50% frequency and 
1.9% ± 3.5% by volume for stomach only). 
Janthina spp. (violet snails) were present but 
occurred infrequently (30% frequency) and in 
low volumes (0.8% ± 1.9% of total volume). 
Anthropogenic debris, including small soft 
and hard plastic pieces, polypropylene line, 
and monofilament line, was common (70% 
frequency), averaging 4% of total volume, 
with a maximum volume of 11% in one sam-
ple. Algae were not commonly encountered 
(20% frequency), although Rhodophyta com-
posed roughly 27% of the total volume for 
one sample, and Turbinaria ornata composed 
7% of the total volume in another sample. 
Twenty-nine percent of the stomach contents 
by volume were unidentifiable as a result of 
the digestion process. The total volume of 
prey found in the stomach samples ranged 
from 24 to 315 ml. There were no significant 
differences in prey items between the two 
turtle morphotypes (Kruskal-Wallis, P = .114, 
Pearson correlation coefficient = 0.9). The 
distribution of the oceanic green turtles sam-
pled ranged in an area from 5.6° to 33° N 
latitude and 159° E to 154° W longitude (Fig-
ure 2). All turtles were captured at a distance 
between 60 and 1,700 km from any landmass 
and over water depths between 1,890 and 
5,780 m. The size distribution for green turtle 
specimens ranged from 30.0 to 70.5 cm CCL 
with a mean of 48.1 cm ± 12.4 (n = 10 turtles). 
All drift-net fisheries turtles were sampled 
north of the Hawaiian Islands. Longline-
captured turtles were sampled both north and 
south of the Hawaiian Islands (Figure 2).

We determined mtDNA haplotypes for six 
of the 10 turtles, including two of the four 
drift-net – captured and four of the six Hawai‘i 
longline-captured turtles. The other four 
samples were too degraded for proper analysis 
(Figure 2). The two drift-net – captured turtles 
we were able to sequence had a common Ha-
waiian haplotype, CmP1 (Dutton et al. 2008), 
and the other two turtles had morphological 
characteristics consistent with the CmM mor-
photype. Three of six longline-captured tur-
tles we sequenced had a common eastern Pa-
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cific haplotype, CmP4 (Dutton et al. 2000, 
2008), and all had the ETP morphotype. One 
of the longline specimens had a haplotype 
that occurs both in the Hawaiian and the 
eastern tropical Pacific nesting populations, 
CmP3 (Dutton et al. 2008), and that animal 
had the morphological characteristics of an 
ETP green turtle. Of the two longline-
captured turtles we were unable to sequence, 
one had the typical CmM morphotype, and 
the other had morphological characteristics 
of an ETP green turtle (see Figure 2).

discussion

Diet

Our study analyzed C. mydas collected 
throughout oceanic environments in the cen-
tral North Pacific and focuses on pelagic tur-
tles (Figure 2). The prey items we describe in 
this study indicate that green turtles foraging 
on the high seas are opportunistic, mainly 
carnivorous, feeding at or near the surface 
(see Table 1). Gelatinous zooplankton (e.g., 
Pyrosoma, salps, ctenophores, and cnidarians) 

TABLE 1

Frequency of Occurrence (% of Stomachs) and Mean Percentage of Total Volume (±1 Standard Deviation [SD]) 
for Prey Items (Listed to Lowest Resolvable Taxonomic Rank) Found in Green Sea Turtle (Chelonia mydas) 

Stomachs (n = 10)

Prey Group
% Volume 

(±1 SD)
Frequency of 

Occurrence (%)

Algae
Phaeophyta: Turbinaria ornata   7.0 10
Rhodophyta 26.7 10

Coelenterata: Hydroida
Pyrosomatidae: Pyrosoma atlanticum 35.2 (±42.4) 80
Cnidarians   1.9 (±3.5) 50
Salpidae   0.8 (±1.5) 40
Ctenophores   3.1 10

Crustacea
Lepadidae (Lepas spp.) including L. anatifera anatifera and L. anserifera 13.7 (±22.3) 70
Amphipoda: Hyperidea (including Oxycephalus, Lycaea, Vibilia)   0.5 (±1.3) 60
Decapods: crabs: unidentified spp. parts   0.6 (±1.3) 20
Copepod <1.0 10

Fishes
Scombridae: Scomber japonicus 49.5 10
Ostraciidae: Lactoria diaphana (spiny cowfish)   4.8 10
Flying fish eggs (Hirundichthys speculiger)   0.2 (±0.6) 30
Unidentified spp. 19.0 10

Mollusca: Gastropoda
Pterotracheids including Carinaria spp.   3.5 (±6.2) 60
Ptenoglossa: Janthina spp.   0.8 (±1.9) 30
Pteropoda: Cavolinia spp. including C. globulosa and C. tridentate   1.1 (±2.8) 30

Mollusca: Decopoda
Squid (Ommastrephes bartrami) 47.6 10
Cephalopoda   0.6 10

Marine debris
Artificial debris: Plastic   3.5 (±4.3) 70
Artificial debris: Polypropylene line   1.4 (±3.1) 40
Natural debris: Bird feathers <0.1 30
Artificial debris: Monofilament <0.1 20
Natural debris: Tree bark   1.0 10

Other
Gnathosomulida mouthpart <0.1 10
Coralline rock   0.1 10
Unidentified remains 28.9 (±30.4) 80
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may also have made up part of the unidenti-
fied remains (28.9% ± 30.4% of total volume), 
because jellies are likely to be digested faster 
owing to their soft bodies, making clear iden-
tification difficult, especially when prey items 
were obtained from the intestinal tract. Al-
though we did not quantify the volume of the 
intestinal contents of four of the 10 intestinal 
tract samples, we were able to easily identify 
and measure Pyrosoma bodies, shells from pe-
lagic snails and barnacles, and debris for fu-
ture analysis. Gelatinous zooplankton seems 
to be an important food source for all sea tur-
tle species during their oceanic phase, because 
these foods have been documented as forage 
for green turtles as well as leatherbacks 
(Davenport and Balazs 1991), loggerheads 

(Parker et al. 2005), and olive ridleys 
( Work  and Balazs 2002, 2010). Davenport 
and Balazs (1991) suggested that Pyrosoma 
and  other gelatinous zooplankton are likely 
targeted as prey not for their gelatinous 
bodies but for their stomachs or “nuclei,” 
which are of higher nutritional value because 
they contain compacted phytoplankton, de-
tritus, and microzooplankton. Pyrosoma were 
the most prevalent prey item that we found in 
eight out of 10 stomach samples.

Arenas and Hall (1991) reported a rela-
tionship between sea turtles and floating 
objects in the eastern tropical Pacific. We 
frequently observed goose barnacles (Lepas 
spp.), Carinaria spp. (sea snails), and sea but-
terflies (Cavolinia spp.) in our samples but not 

Figure 2. Distribution of green turtles (n = 10) taken as bycatch in the high-seas drift-net fishery (DN, 1990 – 1992) 
and Hawai‘i-based longline fishery (LL, 1999 – 2004). Curved carapace length is shown to the nearest centimeter 
(CCL, cm). Morphotypical Chelonia mydas (CmM) are shown as black circles; eastern tropical Pacific morphotypes 
(ETP) are shown as inverted white triangles. mtDNA haplotypes in legend are indicated as follows: CmP1, Hawaiian 
Islands (central Pacific) haplotype; CmP4, eastern Pacific haplotype; and CmP3, Islas Revillagigedo rookery.
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in large volumes. The goose barnacles would 
likely have been harvested from floating de-
bris. Janthina spp., the violet snails, a prey 
group common in oceanic loggerhead diets 
(Parker et al. 2005), were not common in 
green turtle stomach samples we examined. 
Parker et al. (2005) also noted that Velella 
velella, by-the-wind sailors, was another com-
mon component of oceanic loggerhead diets, 
but this prey item was absent in all our green 
turtle stomach samples. Janthina spp. usually 
prey on Velella, and these species could likely 
be found together or individually. Velella 
often occur in large rafts of many hundreds of 
individuals ( Wrobel and Mills 1998). How-
ever, because of the small sample size, the lack 
of Velella in this study should be further inves-
tigated to determine if this indicates a dietary 
preference, omission due to sample size, or 
just an absence of Velella in the area where the 
turtles were foraging.

Our finding of plastic in 70% of the stom-
achs we examined is consistent with many 
previous studies that document the ingestion 
of plastics by sea turtles (Balazs 1985, Allen 
1992, Shaver and Plotkin 1998, Tomás et al. 
2002). During necropsy, there were no appar-
ent blockages or adverse impact due to the 
ingestion of the plastic debris ( Work and 
Balazs 2002). Consumption of plastic debris 
may not have any immediate lethal effect on 
the turtle (McCauley and Bjorndal 1999), but 
the decrease in nutritional value of a diet 
composed of debris may lead to detrimental 
effects, such as suboptimal health. Studies 
show increasing amounts of floating plastics 
in both the Pacific and Atlantic oceans (Day 
et  al. 1990, Moore et al. 2001, Pichel et al. 
2007, Barry 2009, Gill 2010, McLendon 
2010), which may lead to an increase in plastic 
consumption by turtles, but future studies 
need to be done to validate this hypothesis.

Our findings indicate that the turtles likely 
are opportunistically feeding on bait. A 
healthy fish or squid would be difficult for a 
turtle to chase down and catch, so it is more 
likely that only dead or injured specimens of 
this prey type would be ingested. The pres-
ence of saba (Scomber japonicus), a common 
bait used in the Hawai‘i-based longline fish-
ery, and squid, Ommastrephes bartrami, the 

target species of the high-seas squid drift-net 
fishery ( Wetherall et al. 1993), suggests that 
the oceanic green turtles were interacting 
with fishery gear and engaging in active dives 
for foraging purposes, and based on dives re-
corded for adult green turtles in the Hawaiian 
Islands these could have been as deep as or 
deeper than 135 m (Rice and Balazs 2008). 
However, we also found a spiny cowfish, Lac-
toria diaphana, which is not a bait item used in 
any fishery, in the stomach of a longline by-
catch turtle. Although L. diaphana may be 
considered a reef fish, it is also known to live 
in the open ocean in both its juvenile and 
adult stages, confirmed from incidental rec
ords for adults of this species being noted in 
Micronesia from the stomachs of pelagic 
game fish (Myers 1999).

Some of the ingested items could have had 
land-based origins as well as an oceanic com-
ponent. One turtle ingested some tree bark or 
wood. Whether the wood pieces were grazed 
from floating logs or from a neritic habitat is 
uncertain; however, logs and lumber have 
often been found in the open ocean and are 
often used as recruitment habitat for small 
fish, corals, and algae (Highsmith 1985, Jokiel 
1989, Thil and Gutow 2005). Coralline rock 
material ingested could also have come from 
neritic habitat or been scraped off floating ob-
jects while the turtle was grazing on other 
prey items ( Jokiel 1989). Another forage item 
typically thought of as land based was algae. 
Two morphotypical C. mydas specimens had 
algae as forage items. One drift-net – captured 
turtle had red algae (Rhodophyta) in its stom-
ach contents, which could have been grazed as 
it ingested other prey items such as Lepas spp. 
The other turtle ingested a species of brown 
algae, Turbinaria ornata, which is commonly 
found growing attached to coral reef benches 
around the Hawaiian Islands. The longline-
collected turtle was captured north of French 
Frigate Shoals (FFS), Northwestern Hawai-
ian Islands, where T. ornata is established on 
the reefs (  Vroom et al. 2006) and has been re-
corded as forage for the few resident green 
turtles that live year-round at FFS (Balazs 
1980). The turtle was within 200 km of FFS at 
the time it was captured, so it may have come 
upon a raft of floating Turbinaria, or it could 
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have foraged directly at FFS before returning 
to the pelagic zone because there was a low 
volume of Turbinaria in the intestine also.

Genetics

As noted, all drift-net – collected turtles were 
captured north of the Hawaiian Islands (Fig-
ure 2); those turtles were also all morphotypical 
(regular CmM type) C. mydas (Figure 1A). 
The one longline-collected turtle captured 
north of the Hawaiian Islands was a CmM 
type as well. Unfortunately, mtDNA hap
lotypes could not be obtained for all of the 
drift-net – caught turtles; although the genetic 
results we did obtain show that the regular 
CmM type green turtles belonged to the cen-
tral Pacific (Hawaiian) genetic stock. How
ever, because CmM morphotypes in this 
study were caught as far west as 155° E and we 
were unable to obtain genetic results from 
those specimens, it is possible that they may 
have come from western Pacific nesting 
beaches such as in Japan, Taiwan, or the 
Commonwealth of the Northern Mariana Is-
lands or other numerous Pacific islands rook-
eries, rather than the Hawaiian archipelago 
(see Dethmers et al. 2006, Cheng et al. 2008). 
All of the longline-collected turtles captured 
south of the Hawaiian Islands had eastern Pa-
cific morphology (ETP morphotype or mela-
nistic type [Figures 1B, 2]). Genetic analysis 
for turtles with ETP morphotypes indicated 
that they typically had the CmP4 mtDNA 
haplotype, commonly found at all the eastern 
Pacific nesting beaches, including the Galápa-
gos and Mexico (Dutton et al. 2008), but not 
at any of the central or western Pacific rook-
eries surveyed to date (Dethmers et al. 2006, 
Cheng et al. 2008, Dutton et al. 2008). Our 
results suggest that these two different mor-
photypes encountered as juveniles on the high 
seas are from two distinct stocks: the CmM 
type from central and possibly western Pacific 
stocks, and the ETP morphotype from eastern 
Pacific stocks. Of the ETP morphotypical 
greens, one was determined to have a mtDNA 
haplotype (CmP3 [Figure 2]) found in low 
numbers in the central Pacific (Hawaiian) and 
only one ETP rookery, Islas Revillagigedo 
(Dutton et al. 2008), indicating that this turtle 

likely originated from that offshore Mexican 
archipelago, because that particular haplotype 
has not been found in any other ETP nesting 
population. These results suggest that the 
biogeographic barrier that has been noted for 
a broad range of marine fish (Ebeling and 
Weed 1963, Hubbs and Wisner 1980, Col-
lette and Aadland 1996, Lessios and Robert-
son 2006) also may extend to the pelagic dis-
tribution of oceanic green turtles in the Pacific 
(P.H.D., S. Hargrove, and G.H.B., unpubl. 
data).

It is possible that there are two different 
life history pathways at work for the two tur-
tle morphotypes. One life history is the “nor-
mal” life history cycle, where small pelagic 
green turtles spend 5 – 10 yr (Zug et al. 2002, 
Reich et al. 2007) in the oceanic environment 
and then recruit to a neritic forage habitat in 
the Pacific at between 35 and 45 cm SCL. 
This life history seems to be followed more 
closely by CmM type green turtles. The other 
life history cycle has an extended oceanic pe-
riod or perhaps has the turtles moving be-
tween neritic and oceanic habitats throughout 
their life history, and we propose that this life 
history pathway is being used more often by 
those turtles of ETP morphology and ge
netics. Hatase et al. (2006) suggested that 
adult female green turtles foraged in the pe-
lagic while moving between neritic and nest-
ing areas; however the tracking did not indi-
cate a prolonged stay for these turtles in the 
oceanic realm. Senko et al. (2010) recently 
published evidence that a small percentage of 
immature East Pacific green turtles moved 
between neritic foraging areas, because the 
turtles were recaptured in foraging areas 
80 – 300 km away from their original capture 
site. During that time, the turtle could have 
been traveling along the coast or it could have 
also gone back into pelagic habitat, foraging 
in the open ocean while it moved between ne-
ritic foraging sites. Other evidence to support 
this divergence in life history comes from a 
study done by Seminoff et al. (2008), in which 
postnesting females were tracked from the 
Galápagos Islands, where two of the seven 
turtles tracked spent time in the open ocean 
for over a month. These results bolster the 
hypothesis that oceanic foraging behavior 
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may be more prevalent throughout the life 
history of green turtles, especially ETP tur-
tles, than the standard understanding of their 
life history suggests. The size range of the 
turtles in our study also indicates the likeli-
hood of an extended pelagic stage, with five of 
the 10 greens sampled measuring larger than 
the average recruit size of 40 – 45 cm, four 
with ETP morphology and three genetically 
confirmed to be ETP animals. The occur-
rence of green turtles in Alaska (Hodge and 
Wing 2000) also suggests extended pelagic 
foraging. Green turtles recorded off Alaska 
are mainly from stranding of turtles on re-
mote islands open to the Alaska Current. 
Most of these stranded turtles had the mor-
phology of ETP green turtles and were larger 
than 60 cm CCL (Hodge and Wing 2000; 
PIFSC, unpubl. data). Although there may be 
sea grass or algae available along the Pacific 
Northwest coast for neritic foraging, prey 
items identified from the turtles that were 
necropsied indicated a pelagic diet (Carinaria 
spp. and Pyrosoma spp., PIFSC, unpubl. data).

Because of the small sample size in our 
study, additional research is needed to fully 
document the oceanic habitat and oceanic 
foraging ecology of the green turtle. Because 
sea turtles are rarely observed or scientifically 
sampled in the open ocean, obtaining infor-
mation on the oceanic stage of the green tur-
tle is mainly confined to a relatively few sam-
ples from fisheries bycatch. In fisheries as well 
as surveys in the Pacific, only 6% – 9% of the 
turtles encountered over multiple years have 
been identified as green turtles ( Wetherall 
et al. 1993, Alfaro-Shigueto et al. 2002, Don-
oso and Dutton 2010; R. Pitman unpubl. 
data). Total numbers of all turtle species 
caught in these fisheries could vary between a 
couple of hundred to a couple of thousand 
depending on year, area fished, fishing gear 
used, and many other variables. However, ob-
taining turtles from fisheries bycatch for sci-
entific research is often hindered by lack of 
collection or Convention on International 
Trade in Endangered Species of Wild Fauna 
and Flora (CITES) permits and also lack of 
adequate storage facilities aboard fishing ves-
sels to properly preserve scientific samples. 
Research is also needed to more fully docu-

ment the movements of green turtles with 
eastern Pacific morphology to the west of 
Mexico and south of the Hawaiian Islands to 
determine which nesting populations these 
turtles may originate from. These turtles are 
of particular interest because they exhibit a 
life history of an extended pelagic stage that 
is  different from the usual understanding of 
green turtle life history, so more information 
about these turtles would be beneficial.
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