
MARINE ECOLOGY PROGRESS SERIES
Mar Ecol Prog Ser

Vol. 419: 289–294, 2010
doi: 10.3354/meps08833

Published November 30

INTRODUCTION

Populations of green sea turtles Chelonia mydas
have declined worldwide, and many populations are
considered to be at a fraction of their historical abun-
dance and environmental carrying capacity (Jackson
et al. 2001, Seminoff 2004, Tiwari et al. 2006). How-
ever, recent analyses of global trends in green turtle
nesting populations demonstrated a promising, and
sometimes remarkable, increase over the past decades
at several nesting rookeries (Bjorndal et al. 1999, Semi-
noff 2004, Troëng & Rankin 2005, Broderick et al. 2006,
Chaloupka et al. 2008). Among the rookeries that have
responded positively to long-term protection is the
green turtle population on East Island in French
Frigate Shoals (Balazs 1976), which lie within the

remote Northwestern Hawaiian Islands (Fig. 1), an
area designated as the Papahanaumokuakea Marine
National Monument in 2007. Prior to the mid 20th cen-
tury, green turtles were heavily exploited for their eggs
and meat in the Hawaiian Islands, and their nesting
habitats destroyed, resulting in a severe population
decline (Balazs 1980, Balazs & Chaloupka 2004a).
However, protection was strengthened in the late
1970s by the State of Hawaii and the US Endangered
Species Act (Bennett & Keuper-Bennett 2008), and the
green turtle population has since been recovering
rapidly at a rate of 5.7% per year (Balazs & Chaloupka
2006, Chaloupka et al. 2008) over the past 35 yr.

Although green turtles nest throughout the North-
western Hawaiian Islands, about 90% of the nesting
takes place in French Frigate Shoals (Balazs 1980).
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Within this atoll, approximately 55% of the nesting
takes place on East Island (Fig. 1), where data collec-
tion was initiated in the 1970s (Balazs 1980, Balazs &
Chaloupka 2004a). Evidence from tagging and radio
telemetry work indicates that females nesting on East
Island maintain strong nesting fidelity and rarely nest
on any of the other islands (Balazs 1980, Dizon & Bal-
azs 1982). Green turtles migrate from throughout the
Hawaiian archipelago to French Frigate Shoals to
breed (Balazs 1976, 1980), and the numerous foraging
aggregations are composed of one genetic stock and
form a distinct regional population (Dutton et al. 2008).
With increased nesting on East Island and decreased
observations of turtles that have not been previously
tagged, it has been suggested that the population may
be approaching carrying capacity in the coastal forag-
ing habitats (Balazs & Chaloupka 2004a, Chaloupka &
Balazs 2007). However, the carrying capacity of the
finite beaches of French Frigate Shoals remains to be
determined.

Furthermore, loss of nesting habitat from climate
change-related sea level rise has been predicted for
many beaches worldwide (Fish et al. 2005, Baker et al.
2006, Fuentes et al. 2010). In the Northwestern Hawai-
ian Islands, sea level rise due to climate change and
the natural subsidence of the northwestern segment of
the archipelago over geologic time are of growing con-
cern. Baker et al. (2006) estimated a loss in terrestrial
habitat between 3 to 75% under various scenarios of
sea level rise. Models predicted that, of the islands
evaluated within French Frigate Shoals, East Island
would persist the longest (Baker et al. 2006), suggest-
ing that East Island may play an even greater role for
green turtle nesting in the Hawaiian Islands.

Increased nesting densities on East Island would
result in density-dependent changes in the nesting
environment (Honarvar et al. 2008) and in density-
dependent factors such as nest destruction by nesting
females and disease regulating population size.
Females have been observed to destroy incubating
nests during their nesting process on East Island (Bal-
azs 1980). When a turtle crawls up a beach to nest, she
clears the sand around her with her flippers creating a
body pit, and then excavates the nest chamber,
deposits her eggs, and covers up and camouflages the
nest; at high nest densities nearby incubating nests are
often destroyed by a nesting turtle (Girondot et al.
2002, Caut et al. 2006, Tiwari et al. 2006). As destroyed
eggs accumulate in the sand, increased microbial
activity may increase mortality within incubating nests
(Cornelius et al. 1991, Marcovaldi et al. 1999, Phillott &
Parmenter 2001). Density-dependent predation on
nests (Tiwari et al. 2006) would not apply to East Island
because of the absence of predators (Balazs 1980).

Thus, the objective of the present study is to deter-
mine the carrying capacity of East Island for hatchlings
and nesting females under current conditions and the
predictions of reduced nesting habitat due to sea level
rise; carrying capacity is defined as the maximum
number of hatchlings that can be produced in a season
(Tiwari et al. 2006). Given the relatively rapid increase
in the nesting population and its distinct genetic and
ecological importance, evaluating the carrying capac-
ity of key habitats and understanding ecological pro-
cesses, under current scenarios and the predictions of
climate change, are critical for updating and achieving
recovery goals for this species (National Marine Fish-
eries Service and US Fish and Wildlife Service 1998).
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Fig. 1. Hawaiian archipelago and the location of French Frigate Shoals and East Island



Tiwari et al.: Green turtle nesting beach carrying capacity

MATERIALS AND METHODS

French Frigate Shoals is a 35 km long crescent-
shaped atoll consisting originally of 11 islands (Amer-
son 1971) and currently of 8 emergent islands and 2
volcanic outcrops. Islands within the atoll differ in sub-
strate, and East Island is characterized by a calcareous
substrate composed of coarse to fine fragments of
coral, coralline algae, mollusks, humus, and barnacles
(Balazs 1980, Mortimer 1990). Green turtle nesting
extends from May to September (Balazs 1980), and
annual surveys of nesting females have been con-
ducted on East Island since 1973. For most of these 37
seasons, night surveys have been conducted for a few
weeks during the peak nesting months to count and
tag turtles. Saturation surveys were conducted from
1988 to 1992, during which time the entire nesting sea-
son was monitored (Wetherall et al. 1998). Recent
analyses of population trends for 30 and 32 yr of nest-
ing have been presented by Balazs & Chaloupka
(2004a) and (2006), respectively. Here we add nesting
female estimates for the years 2005 to 2009, and pre-
sent an updated graphical overview of the nesting
trend for the past 37 yr.

Carrying capacity at East Island was determined by
using the simulation model described by Tiwari et al.
(2006) to estimate carrying capacity at the green turtle
nesting beach in Tortuguero, Costa Rica. The model was
modified to simulate processes that affect hatchling
emergence on East Island. Given the remoteness of
French Frigate Shoals and the difficulties of extensive
monitoring and data collection, including potential con-
flicts with the critically endangered Hawaiian monk seal
Monachus schauinslandi, limited data are available to
estimate East Island model parameters. Several life his-
tory parameters are estimated from in-depth studies on
East Island during the 1970s (Balazs 1980).

In the present simulation model, all available area on
the island was considered suitable for nesting, as tur-
tles have been observed to scatter their nests randomly
throughout the island (G. H. Balazs unpubl. data). The
available nesting area of 30 865 m2 was determined by
taking the average of the mean low water line and the
spring high tide as estimated by Baker et al. (2006) for
East Island and subtracting the unsuitable nesting
habitat, which consists of a permanent wooden plat-
form (7.5 m2) and a rock pile (27.1 m2). The number of
nests present on the beach on each day (t) can be sum-
marized by the equation:

Nestst =  Nests(t – 1) – Ft + Nt – Ht

On each day (t) for 174 d, the model simulated a ran-
dom value (according to the descriptions given below)
for the number of nests completely destroyed by nest-
ing females (F), the number of nests deposited each

day (N), and the number of nests hatched (H). Erosion
was considered to be negligible in this model as it
occurs towards the end of the season, and only at one
end of East Island; this would result in lowering hatch-
ling output and its significance would depend on the
timing and intensity of the erosion. No mammalian
nest predators are present on East Island, and although
2 species of ghost crabs (Ocypode ceratophthalmus
and O. laevis) are found on the island, neither has been
observed depredating incubating eggs (Balazs 1980).

Only nesting in the main months (15 May to 31
August) was considered in the model, but the model
was run until early November (t = 174 d) to allow all
nests laid in August to complete their average incuba-
tion period of 65 d, which was estimated by Balazs
(1980) and is similar to the mean incubation duration of
66 d estimated on Tern Island in French Frigate Shoals
(Niethammer et al. 1997). The number of nests laid
each day (N) was drawn from a Poisson distribution
whose mean was the product of the total number of
nests laid in the season and the mean proportion of
nests laid on that day, which was determined from the
average proportion of nests laid on each day between
1988 and 1992; these were the only years for which sat-
uration surveys were carried out. Temporal patterns of
nesting appear not to have changed radically over the
past 37 yr (G. H. Balazs pers. obs.). An average clutch
size of 104 eggs, estimated by Balazs (1980), was
assigned to each nest.

The expected probability of a nest being destroyed
by a nesting female is summarized by the equation 1 –
e–AD, where A is the area of destruction and D is nest
density (nests m–2 on East Island) at time of nest
destruction. The area within which a female is likely to
destroy another nest during her nesting process was
determined from body pits excavated by nesting green
turtles on East Island during the 2009 nesting season.
This area on East Island measured on average 1.33 ×
1.5 m, which corresponds to an area of 2.0 m2, and was
assumed to be circular. Therefore, in the present study,
the number of nests destroyed by each female (F) on
each day was drawn from a Poisson distribution with a
mean defined as 2.0 m2 × the current nest density on
the beach. A female was allowed to destroy more than
one nest, but the total number of nests destroyed could
not exceed the total number of nests in the beach. The
fraction of the nest destroyed by a nesting female var-
ied from a few eggs to most of the eggs; a random frac-
tion of eggs selected from a uniform distribution was
subtracted from the clutch. Eggs remaining in partially
destroyed nests were allowed to complete the 65 d of
incubation and hatch (according to rules given below)
and removed from the model on the day they hatched.
Nests that were completely destroyed were removed
from the model on the day they were destroyed.
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Hatchling output on each day (t) is summarized by
the equation:

where hatchling emergence from nests successfully
completing incubation (E) is determined by multiply-
ing the number of eggs or clutch size (CS) in each nest
ready to hatch (i) by a proportion (P) randomly selected
from a beta distribution with shape parameters 1.73
and 0.7. These parameters were calculated from hatch-
ling emergence data collected by Balazs (1980) on East
Island. Nests partially destroyed by nesting females
were subjected to a similar random reduction of eggs
because a female’s disturbance of the area while nest-
ing may increase risks for incubating nests from
increased microbial activity due to broken eggs and
from changes in the environmental conditions of nests
(Tiwari et al. 2006). The simulation model was run from
an estimate of at least 1000 nests on East Island in
recent years up to 200 000 nests.

Finally, to determine the sensitivity of the model to
small changes in parameters, a 20% increase in mor-
tality during incubation was integrated into the model.
To incorporate projections of maximum sea level rise
by Baker et al. (2006) at East Island, the model was
subsequently run with a 30% reduction in available
nesting area (21 865 m2). Increasing sea levels may also
increase the water table on the island, thereby drown-
ing nests. Therefore, model output was also evaluated
with a 20% increase in mortality during incubation in
addition to the 30% reduction in available nesting
area. These simulations were also run for nest numbers
on East Island from 1000 up to 200 000 nests. The R
software (R Development Core Team 2009) was used
to run the models.

RESULTS

Inclusion of nesting data from 2005 to 2009 demon-
strated that the nesting population is continuing to
grow with the greatest number of turtles over the 37
sampling seasons nesting in 2008 (Fig. 2). In the simu-
lation model, carrying capacity was reached between
1.9 and 2.1 million hatchlings under current condi-
tions; carrying capacity was approached when 80 000
to 120 000 nests were laid on the beach (Fig. 3), which
represents 2.6 to 3.9 nests m–2 if nests were uniformly
distributed on the beach. The number of nests
destroyed by nesting females in the model was approx-
imately 26 per 1000 nests laid on the beach, consistent
with the number of nests observed being destroyed by
nesting females at the peak of the season in 2008 when
the maximum number of nests was laid on East Island

(Fig. 2). For a 20% increase in mortality during incuba-
tion, hatchling output decreased and carrying capacity
was reached between 1.5 and 1.6 million hatchlings;
carrying capacity was approached when at least 80 000
to 120 000 nests were placed on the beach.

With sea level rise and a reduction in available
nesting habitat, carrying capacity was between 1.3
and 1.6 million hatchlings (Fig. 3). When a 20%
increase in mortality during incubation was applied
to this model, hatchling output decreased; carrying
capacity was between 0.9 and 1.1 million hatchlings
(Fig. 3). With a rise in sea level, carrying capacity
was reached when 60 000 to 100 000 nests were laid
on the beach.
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Fig. 2. Chelonia mydas. Estimated number of green turtles 
nesting on East Island, French Frigate Shoals, 1973–2009
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Fig. 3. Chelonia mydas. Number of hatchlings produced at
East Island under different scenarios incorporated in the sim-
ulation model: current situation (d), current situation with
20% increase in mortality during incubation (s), sea level rise
and reduced nesting habitat (×), and sea level rise and
reduced nesting habitat with 20% increase in mortality 

during incubation (r)
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DISCUSSION

Although once seriously depleted due to wide-
spread exploitation within the Hawaiian Islands (Bal-
azs 1980), the green turtle stock in French Frigate
Shoals has been making an impressive comeback.
With the absence of major predators on the islands,
the main factors regulating hatchling output would
be intraspecific destruction of eggs, as suggested by
other researchers (Bustard & Tognetti 1969, Girondot
et al. 2002, Tiwari et al. 2006, Mazaris et al. 2009),
increased microbial activity resulting from a higher
nutrient load after a certain nest density threshold is
reached (Cornelius et al. 1991, Tiwari et al. 2006), as
well as changes in the incubation environment.
Honarvar et al. (2008) demonstrated experimentally
that increasing the density of olive ridley Lepi-
dochelys olivacea nests resulted in lower hatching
success possibly due to higher temperatures, higher
carbon dioxide levels, and lower oxygen levels.
Tiwari et al. (2006) found that below-beach-surface
predation, erosion, and beach flooding affected green
turtle hatchling production at Tortuguero, Costa Rica,
in a density-independent manner. Density-indepen-
dent effects of erosion and severe tidal inundation
are considered negligible during the main season on
East Island; however, climate change forecasts sug-
gest an increase in the intensity of these factors
(Hawkes et al. 2009).

The beach at East Island appears to be well below its
carrying capacity. If mean clutch frequency for green
turtles nesting on East Island is 4 (estimated from satu-
ration surveys during 1988–1992; G. H. Balazs unpubl.
data) and the mean number of females nesting in the
past 10 yr is 390 (estimated from values in Fig. 2), then
the current mean nesting population represents 1.3 to
2% of the 20 000 to 30 000 females that would deposit
80 000 to 120 000 nests on East Island at carrying
capacity. Similarly, in the Caribbean, the current green
turtle population is estimated to represent only 3 to 7%
of pre-exploitation levels (Jackson et al. 2001). If
mature females comprise 0.6% of a green turtle
stock (Chaloupka & Balazs 2007), then 20 000 to 30 000
females represent stocks of 3.3 to 5 million green tur-
tles. While 20 000 to 30 000 females in a population falls
well within acceptable estimates for some of the other
large green turtle populations (Bjorndal et al. 1999,
Limpus et al. 2003, Seminoff 2004) and East Island
appears capable of supporting this larger nesting pop-
ulation, the green turtle population in French Frigate
Shoals may be regulated by availability of food and
refugia in suitable coastal habitats. Chaloupka & Bal-
azs (2007) estimated carrying capacity of the current
coastal habitat to be 73 600 green turtles and the cur-
rent stock to be at 83% of carrying capacity. Wabnitz

(2010) also demonstrated that the green turtle foraging
population at the Kaloko-Honokohau National Histori-
cal Park had reached carrying capacity. Furthermore,
a decline in growth rates of immature green turtles at
the foraging grounds while population abundance has
been increasing suggests local density-dependent
effects (Balazs & Chaloupka 2004b). Under this sce-
nario, East Island will successfully support increased
nesting when carrying capacity is reached in the
coastal habitat and if other traditional nesting areas are
inundated by sea level rise. Over geological timescales
sea turtles rookeries have undergone many changes
resulting in colonization of new areas (Bowen et al.
1992). Nevertheless, new findings suggest that most
low-lying atoll islands may either remain stable or
increase in area (Webb & Kench 2010) despite climate
change-induced changes in sea level. In the end, the
coastal habitats may play a bigger role in regulating
the Hawaiian green turtle population than available
nesting habitat.

However, the estimates of carrying capacity in the
coastal habitat and the percentage of mature females
present in the population (Chaloupka & Balazs 2007)
are based on limited data and inferences that have
raised concerns because of their management implica-
tions (Snover 2008). Additional assessments will be
necessary when more data on age and size class com-
position, rates of predation, and productivity of the for-
aging habitats become available for the Hawaiian
stock. Also, impacts of climate change on the ecology
and structure of key habitats, sex ratios, as well as dis-
tribution, behavior, and diet will need to be evaluated
(Hawkes et al. 2009).

Given the genetic and ecological importance of the
Hawaiian stock (Chaloupka & Balazs 2007, Dutton et
al. 2008), the ongoing debate on the reinstatement of
indigenous hunting rights in the Hawaiian Archi-
pelago (Chaloupka & Balazs 2007), and the ambigu-
ous impacts of climate change (Baker et al. 2006,
Hawkes et al. 2009), an ecosystem-based assessment
of the population is needed to understand the adapt-
ability and resilience of the green turtle population
within a fluctuating ecosystem. This is particularly
important for devising meaningful and adaptive
ecosystem-based conservation and management
strategies.
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