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NUTRITIONAL COMPOSITION OF MARINE
PLANTS IN THE DIET OF THE GREEN SEA TURTLE
(CHELONIA MYDAS) IN THE HAWAIIAN ISLANDS

Karla J. McDermid, Brooke Stuercke, and George H. Balazs

ABSTRACT

In the Hawaiian Islands, seaweeds and seagrasses are eaten by green turtles, Che-
lonia mydas Linnaeus. Sixteen macroalgal species (7 Chlorophyta, 2 Phaeophyta, 7
Rhodophyta), two seagrass species, and multi-specific algal turf from turtle foraging
areas on four different islands were analyzed for proximate (protein, lipid, carbo-
hydrate), water, ash, energy, amino acid, vitamin, and mineral content. Pterocla-
diella capillacea (Gmelin) Santelices and Hommersand, a prominent dietary item,
and Rhizoclonium implexum (Dillwyn) Kiitzing, an infrequently consumed species,
ranked highest in total protein content. Most species contained < 10% crude lipid.
Soluble carbohydrates ranged from 3.2%-39.9% dry weight. Ash values ranged from
13.7%—81.4% dry weight. Energy content of P. capillacea was over 14 k] g™ ash-free
dry weight. All species tested contained measurable quantities of 11 minerals. Vita-
min A (B-carotene) was detected in all marine plants tested; most contained Niacin
(B,); and Enteromorpha flexuosa (Wulfen) J. Agardh had the highest amount of vi-
tamin C (3 mg g™'). Samples contained measurable amounts of all essential amino
acids, except for tryptophan. These data provide new information about Hawaiian
green turtle feeding ecology and factors that may influence somatic growth rates.

The green turtle (Chelonia mydas Linnaeus) is the most common sea turtle and
the largest marine herbivore in the Hawaiian Islands (Balazs, 1980; Balazs and Cha-
loupka, 2004a). Over 275 species of marine algae, and two seagrass species have been
reported in crop and stomach samples from Hawaiian green turtles (Balazs, 1980;
Balazs et al., 1987; Russell and Balazs, 19944, 2000; Russell et al., 2003). Ten seaweed
genera and one seagrass genus form the majority of the green turtle diet in the Ha-
waiian Islands (Arthur, 2005). Green turtles in the Hawaiian Islands show fidelity to
foraging grounds on specific reefs (Balazs, 1982), and are substantially site-specific,
except for migrations to and from breeding grounds at French Frigate Shoals in the
Northwestern Hawaiian Islands (Balazs and Chaloupka, 2004a,b). In the Caribbean,
green turtles feed primarily on seagrasses in “grazing plots” (Bjorndal, 1980; Mor-
timer, 1981; Thayer et al., 1982; Mendonga, 1983; Thayer et al., 1984; Bjorndal, 1985,
1996), and seaweeds form the bulk of the diet only in certain habitats (see review in
Mortimer, 1982; Bjorndal, 1985, 1996; Garnett et al., 1985; Forbes, 1996; Seminoff
et al,, 2002). The nutritional value and digestibility of the Caribbean seagrass, Thal-
assia testudinum Banks ex Konig (Bjorndal, 1980; Vicente et al., 1980; Dawes and
Lawrence, 1983; Dawes, 1986), and 15 species of seaweeds at Heron Reef, Australia
(Forbes, 1996) have been well-documented, but this important aspect of the feeding
ecology of Hawaiian green turtles is lacking.

The Hawaiian green turtle metapopulation represents a distinct genetic stock (Dut-
ton, 2003), and has increased in numbers since protection under the U.S. Endangered
Species Act began in 1978 (Balazs and Chaloupka, 2004b). However, the Hawaiian
green turtle stock is characterized by a long-term decline in somatic growth rates of
immature turtles, significant spatial and temporal variation in immature growth rates
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that are foraging ground-specific, and a high expected age-at-maturity ranging from
35 to 50+ yrs, compared to 25-30 yrs in some Great Barrier Reef populations (Zug
et al., 2001; Balazs and Chaloupka, 2004a; Chaloupka et al., 2004). Environmental
conditions (e.g., sea surface temperature fluctuations, coastal flooding events, habitat
quality), density-dependent effects, food stock dynamics, and forage type differences
have been suggested as explanations for variation in somatic growth patterns (Bjorn-
dal et al., 2000; Balazs and Chaloupka, 2004a; Chaloupka et al., 2004). The findings
that captive-raised green turtles fed high protein, easily digestible diets grow faster
than wild turtles (Wood and Wood, 1977a,b, 1981; Bjorndal, 1985), reach sexual ma-
turity earlier, and produce more eggs annually per female (Wood and Wood, 1980),
imply that nutrition has an important role in green turtle growth, reproduction, and
long-term viability of the species. Variation in fecundity of wild Caribbean and Su-
rinam populations of green turtles has been credited to differences in diet: seagrass
vs algae (Bjorndal, 1982). Nesting numbers of green turtles have been correlated with
food availability in the months prior to breeding (Limpus and Nichols, 1988; Brod-
erick et al., 2001). Balazs (1982) attributed differences in growth rates of juvenile Ha-
waiian green turtles from different islands to dietary differences. Differences in the
fatty acid composition of depot fat in young Hawaiian green turtles has been linked
to differences in length of time on benthic foraging grounds, and to differences in
primary dietary components: the red macroalga, Pterocladiella capillacea (Gmelin)
Santelices and Hommersand vs the seagrass, Halophila hawaiiana Doty and Stone
(Seaborn et al., 2005). Other than the fatty acid profiles for these two marine plants,
and total dietary fiber content (McDermid et al., 2005), the nutritional composition
of marine plants consumed by Hawaiian green turtles has not been determined. The
purpose of this study was to analyze the proximate composition (protein, carbo-
hydrate, and lipid), as well as water, ash, energy, mineral, vitamin, and amino acid
content of the most common seaweed and seagrass food items at important foraging
grounds to provide new information about the feeding ecology of Hawaiian green
turtles, and factors that may influence somatic growth rate patterns.

MATERIALS AND METHODS

CoLLECTION.—Sixteen species of macroalgae and two species of seagrasses were collected
(approximately 1 kg fresh weight when possible) from 13 different recognized turtle forag-
ing areas (Balazs, 1980): intertidal and subtidal sites on the islands of Hawaii, Maui, Oahu,
and Midway Atoll (Table 1; Fig. 1). The list of species includes members of the Chlorophyta,
Phaeophyta, Rhodophyta, and Magnoliophyta. Species were chosen because they are con-
sumed by the green turtle, C. mydas (Russell and Balazs, 2000). Species were collected during
months when they were abundant at the selected foraging areas. Another dietary item, algal
turf: densely packed, multispecific assemblages of caespitose seaweeds growing in clumps or
tufts < 3 cm in height (Stuercke and McDermid, 2004), was sampled haphazardly in triplicate
each month from October 2002 to August 2003 at an additional turtle foraging area, Kaloko-
Honokohau National Historical Park, Hawaii. All specimens were placed in food-grade plas-
tic bags and transported to the laboratory in insulated containers. Samples were identified to
genus or species based on examination of morphological and anatomical characteristics and
using taxonomic references (Abbott, 1999; Abbott and Huisman, 2004). Voucher specimens
were selected, photographed, and deposited in the Bishop Museum Herbarium in Honolulu
(BISH).

SAMPLE PREPARATION.—Within 6 hrs of collection, fresh material of macroalgae and sea-
grasses was thoroughly rinsed three times in filtered seawater, and any remaining epiphytic
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Figure 1. Hawaiian Archipelago with locations of collection sites numbered in order from north
to south, clockwise around islands: 1 = Corsair Wreck, 2 = Hale‘iwa, 3 = Papa‘iloa, 4 = Laniakea,

5 = Kaneohe Bay, 6 = Kahala, 7 = Lualualei, 8 = Kanaha, 9 = Ma‘alaea, 10 = Waikoloa Dolphin
Lagoon, 11 = Onekahakaha, 12 = Leleiwi, 13 = Punalu‘u, 14 = Kaloko-Honokohau National His-
torical Park.

algae, invertebrates, sand, and debris removed by hand. Seagrass specimens were divided into
the above-ground (leaves, petioles) and below-ground (rhizomes, roots) parts, for comparison
of results with previous studies. Turf samples were also rinsed three times in filtered seawater
to remove as much sand, debris, and invertebrates as possible, but were not hand-cleaned.

All samples were divided into portions (50-200 g each), spun in a salad spinner for 30 s to
remove excess water, and then weighed (wet weight). All portions were placed on aluminum
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foil trays, and dried to a constant weight at 60 °C in an air oven. The dried samples were then
ground into a fine powder (to pass through a 1 mm sieve) using a coffee grinder or analytical
mill (IKA™ A11), and then stored in air-tight labeled glass jars in a refrigerator at 4 °C which
maintained moisture content below 5.5%. All chemical analyses were conducted in triplicate
on dried ground material, except in ash determination for which five replicates were used.
All values were reported relative to the dry weight of the seaweed and seagrass, except energy
values, which were based on an ash-free dry weight.

CoMPOSITION ANALYSES.—The water content of the fresh material was calculated by sub-
tracting the dried sample weight from the spun wet weight for each of the portions of the total
sample. Ash content was determined by incinerating the samples for 4 hrs at 500 °C following
the Association of Official Analytical Chemists (1995) methods as modified by Robledo and
Freile Pelegrin (1997).

The Lowry method was used for total protein determination (Lowry et al., 1951; Harrison
and Thomas, 1988). The samples were digested in 1 N NaOH, allowed to react with an alkaline
copper citrate solution and Folin-Ciocalteau phenol reagent to measure protein concentra-
tion colorimetrically based on absorptions at 660 nm in a Beckman Coulter DU 640 spectro-
photometer, and compared to a bovine serum albumin standard.

Soluble carbohydrates were extracted from samples in 10% trichloroacetic acid, and con-
centrations determined by the phenolic sulfuric acid colorimetric method outlined in Dubois
et al. (1956) and used on Mexican seaweeds by Robledo and Freile Pelegrin (1997). Percent
soluble carbohydrate was calculated based on absorptions at 490 nm in a Beckman Coulter
DU 640 spectrophotometer, and compared to a glycogen standard.

A gravimetric method was used similar to that of Chan et al. (1997) in which crude lipid
was extracted in a chloroform-methanol (2:1, v/v) mixture, purified according to Folch et al.
(1957), evaporated to dryness under a stream of filtered N, gas, and weighed.

Pressed pellets of 0.1-0.2 g of dried powder of each sample were combusted in a Parr 1425
Semimicro Calorimeter standardized with benzoic acid. Benzoate was added to ground sam-
ples when necessary to help form pellets and allow total combustion. Total calories were cal-
culated on an ash-free basis (Carefoot, 1985), and converted to k] g™ using the formula: kcal
x 4.184 = kJ. Energy content was not determined for the turf samples, because the pellets fell
apart and did not undergo complete combustion, even after adding benzoate.

Samples were sent to an independent chemical analysis laboratory (Industrial Labs in Denver,
Colorado, USA) that uses methodologies as specified by the Association of Official Analytical
Chemists, the Institute for Nutraceutical Advancement, the Food and Drug Administration,
and the American Association of Cereal Chemists. Vitamin B complex and vitamin C content
of the seaweed samples was determined using HPLC, and p-carotene content was measured
spectrophotometrically. Because of insufficient amount of dried sample, these tests were not
run on four of the 16 species of algae, on the two seagrass species, nor on the algal turf.

Samples of dried ground material were sent to an independent laboratory (Waters Agri-
cultural Laboratories, Inc., Georgia, USA) that uses accepted methods of analysis of the As-
sociation of Official Analytical Chemists (AOAC) and the Association of Florida Phosphate
Chemists. Not all of the samples were tested for minerals because of insufficient available
dried material.

Sixteen seaweed species, two seagrass species, and four turf samples were sent to an inde-
pendent laboratory for amino acid analysis (Protein Chemistry Laboratory, at Texas A&M
University, USA). This lab reports 16 naturally occurring amino acids by first subjecting the
solid sample to a 6 N HCl liquid-phase hydrolysis. Additionally, tryptophan is determined us-
ing a 5 N NaOH hydrolysis, which is optimized for this specific amino acid. The lab then uses
a Hewlett Packard AminoQuant II system that analyzes peptides and proteins by pre-column
derivatization of hydrolyzed samples with o-phthalaldehyde (OPA), which reacts with pri-
mary amino acids and 9-fluoromethyl-chloroformate (FMOC), which reacts with secondary
amino acids. The rapid reaction of both reagents produces a highly fluorescent and UV-ab-
sorbing isoindole derivative, which is then separated by reverse phase HPLC. The derivatized
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amino acids are identified by UV absorbance with a diode array detector or by fluorescence
using an in-line fluorescence detector. The amounts of amino acids recovered are presented
as percent of dry weight of the sample.

RESULTS

The water content of fresh seaweeds and seagrasses consumed by Hawaiian green
turtles ranged from 67.0% to 94.0% (Table 2). Ash was usually the most abundant
component of the dried material in all species, except Enteromorpha flexuosa, Ahn-
feltiopsis concinna, and P. capillacea. The highest values for total protein content
were found in Rhizoclonium implexum (13.9% dry weight) and P. capillacea (13.4%
dry weight). The two lowest protein values were found in the below-ground portion
(roots and rhizomes) of the seagrass, Halophila decipiens (2.5% dry weight), and in
the red seaweed, Acanthophora spicifera (2.6% dry weight). Soluble carbohydrate
composition ranged from 4.3% to 39.9% dry weight. Most species contained < 10%
crude lipid, except for Cladophora vagabunda (11.8% dry weight) and Dictyota acu-
tiloba (16.1% dry weight). Enteromorpha flexuosa, Ulva fasciata, D. acutiloba, Lau-
rencia nidifica, and P. capillacea had the highest energy values, each with over 10 kJ
g ash-free dry weight. Below-ground parts of the seagrass, H. hawaiiana, showed
the lowest energy content.

Vitamin A (B-carotene) was the only vitamin that consistently appeared in measur-
able amounts (Table 3). Rhizoclonium implexum contained the highest amount of
-carotene (330 IU g* dry weight). Only E. flexuosa and U. fasciata showed detectable
amounts of vitamin C, 3.0 mg g! dry weight and 2.2 mg g! dry weight, respectively.
Nine of the seaweeds tested contained Niacin (B,). Niacinamide was found in P. cap-
illacea (0.3 mg g™! dry weight). Only U. fasciata, sampled from Oahu, contained a de-
tectable amount of Riboflavin (B,), 0.01 mg g™ dry weight. Sulfur and potassium were
the most abundant minerals in most of the species (Table 4); whereas, phosphorus
was present in low concentrations in all species. Among the trace elements, boron
and iron had the highest values in the seaweed and seagrass samples. Measurable
amounts of all 17 amino acids assayed, except tryptophan, were found in the seagrass
and seaweed samples (Table 5).

Turf samples from Kaloko-Honokéhau National Historical Park, Hawaii consisted
of 20 different algal genera (Table 6). Variation in monthly ash, protein, soluble car-
bohydrate, and crude lipid content of the turf samples (Fig. 2) was assessed using
balanced ANOVA after Ryan-Joiner’s test confirmed normality and Barlett’s test
verified equal variances. Soluble carbohydrate data were log transformed to achieve
homogeneity of variances. Tukey’s pairwise comparison was employed to determine
where the differences existed between sampling dates. Ash (P = 0.017, F = 3.07, df
= 29) and soluble carbohydrate (P = 0.002, F = 4.51, df = 29) content differed sig-
nificantly over time. For ash, only the values in November 2002 and February 2003
were significantly different from each other; whereas, soluble carbohydrate values for
October 2002 differed significantly from those of January, February, May, and June
2003. Total protein and crude lipid content of turf showed no significant difference
among months. No clear seasonal trends in nutritional composition of the algal turf
were evident. Ash was the most abundant component of the dried turf (mean values
58%—78.8% dry weight); mean total protein values were < 6.5% dry weight; mean
crude lipid content was also consistently low (1.1%—-3.1% dry weight). Measurable
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Table 3. Vitamin A and B, content of Hawaiian seaweeds consumed by green turtles. All values
are based on dry weight. Blank values indicate that vitamin content was not detected at the method
detection limit.

Species Collection # [-carotene (A) IU g! Niacin (B,) mg g™
Chlorophyta
Caulerpa lentillifera NC043 160 2
Cladophora vagabunda NC036 93 1.64
Codium hawaiiense NC045 30 0.8
Codium reediae NC034 36 1.07
Enteromorpha flexuosa NC020 54 —
Rhizoclonium implexum NC044 330 3
Ulva fasciata NCO019 180 —
Ulva fasciata NCO035 70 0.66
Phaeophyta
Sargassum echinocarpum NC027 97 0.09
Rhodophyta
Acanthophora spicifera NC023 51 —
Ahnfeltiopsis concinna NC002 16.2 —
Gracilaria salicornia NCO025 230 0.08
Hypnea musciformis NC033 66 1.26
Pterocladiella capillacea NCO014 170 —

amounts of 17 amino acids were found in the algal turf (Table 7). Histidine, methio-
nine, and tryptophan had the lowest concentrations in all turf samples. Aspartic acid
and glutamic acid were the most abundant amino acids in the turf samples.

DiscussioN

Approximately 500 species of marine macroalgae are known from the Hawaiian
Islands (Abbott, 1999), over half of which are known to be consumed by Hawaiian
green turtles (Russell and Balazs, 2000). However, Balazs (1980) reported nine spe-
cies of algae as major dietary components of green turtles in the Hawaiian Archipel-
ago: Amansia glomerata, Caulerpa racemosa, Codium spp., P. capillacea, Spyridia
filamentosa, Turbinaria ornata, and U. fasciata. Acanthophora spicifera and Hypnea
musciformis, two introduced red seaweeds, have since been added to that list of major
food sources (Russell and Balazs, 19944a,b). In a recent analysis of diet samples, genera
that comprised > 50% of the combined esophagus and anterior crop samples, in-
cluded Halophila, Acanthophora, Centroceras, Gelidiella, Gracilaria, Hypnea, Ptero-
cladiella, Amansia, Cladophora, Codium, and Dictyosphaeria (Arthur, 2005). Four
of the major food species, A. glomerata, H. musciformis, P. capillacea, and U. fas-
ciata were among the highest in energy, soluble carbohydrate, protein, and vitamin
A content, as well as certain minerals and amino acids. However, although extremely
abundant throughout much of the range of the Hawaiian green turtle, and common
in turtle diets (Arthur, 2005), A. spicifera did not show any notably high nutritional
values. Although Codium is common in turtle foregut samples, Codium hawaiiense
and Codium reediae had conspicuously low energy content: < 4.2 k] g ash-free dry
weight. In a previous study (McDermid and Stuercke, 2003), two foliose red seaweeds
consumed by humans, Halymenia formosa Harvey ex Kiitzing (a large, frondose, sub-
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Table 6. Genera comprising the algal turf collected at Kaloko-Honokohau National Historical

Park, Hawaii.

MDERMID ET AL.: NUTRITIONAL CONTENT OF GREEN TURTLE DIET IN HAWAII

Rhodophyta

Chlorophyta

Acanthophora
Anotrichium
Caulacanthus

Cladophora
Enteromorpha
Rhizoclonium

Centroceras Ulva
Ceramium Valonia
Coelothrix

Chondria

Gelidiella

Gelidium

Hypnea

Jania

Polysiphonia

Pterocladiella

Taenioma

Tolypiocladia

tidal species) and Porphyra vietnamensis Tanaka and Pham (small, ephemeral blades
in the splash zone), had higher protein values than any species in this study, but H.
formosa and P. vietnamensis are not reported to be consumed by Hawaiian green
turtles. The selection of food species by green turtles probably optimizes nutrient
and energy intake, but may also be influenced by species accessibility, abundance,
and/or levels of deleterious natural chemical compounds (secondary metabolites) in
the seaweeds (Balazs, 1980; Garnett et al., 1985; Forbes, 1996; Russell et al., 2003).
Turtles may choose their seaweeds and seagrasses in situ based on toughness, succu-
lence, texture, or taste which might reflect plant age or health. Other food attributes
may influence green turtle food selection, for instance, marine herbivorous fish diet
choices are based on digestibility of cell wall and storage carbohydrates (Montgom-
ery and Gerking, 1980; Zemke-White and Clements, 1999), as well as nutrient and
energy content. In contrast, the key factor in food preference in the tropical herbivo-
rous crab, Grapsus albolineatus Lamarck, is algal morphology, rather than nutrient
content or digestibility (Kennish and Williams, 1997).

In this study, the seaweeds, seagrasses, and algal turfs known to be consumed by
Hawaiian green turtles showed considerable variation in nutritional composition that
may be due to species characteristics, as well as the month and location of collection.
Differences in nutrient content did not follow a simple pattern based on phylum, pig-
mentation, or morphology, i.e., a green filamentous seaweed, R. implexum, and a red,
branched, foliose species, P. capillacea, ranked highest in total protein content. In
general, members of the Rhodophyta contained high levels of soluble carbohydrates
(16.0%—33.2%); however, E. flexuosa (Chlorophyta) contained the greatest amount
(39.9%). For species of Chlorophyta and Phaeophyta tested, crude lipids ranged from
2.6% to 16.1%; whereas, all lipid values for Rhodophyta were < 4%. Low energy values
characterized the two seagrasses (Magnoliophyta), as well as two Codium species
(Chlorophyta). The extent to which environmental conditions or algal phenology af-
fect the nutritional composition in subtropical seaweeds is not known.
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Figure 2. Nutritional composition of algal turf at Kaloko-Honokohau, Hawaii Island, based on
monthly samples (n = 3). Error bars represent standard deviation. (A) mean ash content (% dry
weight); (B) mean total protein content (% dry weight); (C) mean soluble carbohydrate content (%
dry weight); (D) mean crude lipid content (% dry weight).

Turf samples composed of a mixture of small red and green algae were consistently
high in ash content, and low in protein and lipid. The high ash levels in the turf may
be a reflection of the abundance of calcareous algae present in the turf, e.g., Jania.
Although ash and soluble carbohydrate content showed significant variation among
months, no clear seasonal pattern in ash, protein, carbohydrate or lipid content of the
algal turf was evident. The year-round availability of turf algae at Kaloko-Honokohau
may be more important to foraging turtles than nutritional quality of the turf.

All parts of Halophila species are found in turtle forestomach samples; however,
it is common to find masses of severed leaves, with only a few rhizomes (D. J. Rus-
sell, American Univ. of Sharjah, United Arab Emirates, pers. comm.). Both Hawaiian
Halophila seagrass species consumed by Hawaiian green turtles had higher ash, low-
er protein, and lower energy in comparison to the well-known Caribbean seagrass
T. testudinum eaten by green turtles (Bjorndal, 1980; Dawes and Lawrence, 1983).
Vicente et al. (1980) reported values for potassium, phosphorus, and magnesium in
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T. testudinum that were similar to the levels of these minerals in H. decipiens and H.
hawaiiana. With respect to other Halophila species, the above-ground portions of
both Hawaiian species had lower protein and energy content than reported for three
Florida species: H. decipiens, Halophila engelmannii, and H. johnsonii (Dawes et al.,
1987, 1989).

Wood and Wood (1977a,b) determined that the essential amino acids and their
quantitative requirements (shown in parentheses) for hatchling green turtles include
lysine (1.8%), tryptophan (0.22%), methionine (0.5%), valine (1.3%), leucine (1.6%),
isoleucine (1.0%), and phenylalanine (1.0%). The amino acid values measured for sea-
weeds and seagrasses in the present study were all lower than the required amounts
for green turtle hatchlings; however, juvenile and adult turtles may have different
amino acid requirements. The turf at Kaloko-Honokohau National Historical Park
showed the same pattern of low levels of these essential amino acids. Similar amino
acid results for marine algae have been reported by Burkholder et al. (1971), Chan et
al. (1997), and Wong and Cheung (2000).

Nutritional composition data provided in this study, in combination with ongoing
research on site-specific food selection, ingestion rates, food stock abundance, and
growth rates may help explain the low somatic growth rate patterns of Hawaiian
green turtles (Balazs and Chaloupka, 2004a), and provide a better understanding of
the dynamics of the Hawaiian green turtle stock.
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