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Abstract

The ability to efficiently and accurately determine genotypes is a keystone technology in modern genetics, crucial to studies
ranging from clinical diagnostics, to genotype-phenotype association, to reconstruction of ancestry and the detection of
selection. To date, high capacity, low cost genotyping has been largely achieved via “SNP chip” microarray-based platforms
which require substantial prior knowledge of both genome sequence and variability, and once designed are suitable only
for those targeted variable nucleotide sites. This method introduces substantial ascertainment bias and inherently precludes
detection of rare or population-specific variants, a major source of information for both population history and genotype-
phenotype association. Recent developments in reduced-representation genome sequencing experiments on massively
parallel sequencers (commonly referred to as RAD-tag or RADseq) have brought direct sequencing to the problem of
population genotyping, but increased cost and procedural and analytical complexity have limited their widespread
adoption. Here, we describe a complete laboratory protocol, including a custom combinatorial indexing method, and
accompanying software tools to facilitate genotyping across large numbers (hundreds or more) of individuals for a range of
markers (hundreds to hundreds of thousands). Our method requires no prior genomic knowledge and achieves per-site and
per-individual costs below that of current SNP chip technology, while requiring similar hands-on time investment,
comparable amounts of input DNA, and downstream analysis times on the order of hours. Finally, we provide empirical
results from the application of this method to both genotyping in a laboratory cross and in wild populations. Because of its
flexibility, this modified RADseq approach promises to be applicable to a diversity of biological questions in a wide range of
organisms.
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Introduction

The genome serves simultaneously as a basic blueprint,
encoding information for proper cellular and developmental
processes necessary to produce an organism, and as a historical
record of the demographic processes and selective forces acting in
a given lineage. Exploration of mechanistic details through
biochemistry, genetics, and development has lead to a deeper
understanding of how genotype leads to phenotype, while
exploitation of the historical record has enabled the fields of
systematics, population genetics, and molecular ecology to
elucidate the pressures and processes that shape diversity in
populations and divergence between species. Studies of genetic
information both encoded and recorded in genomes work with the
same currency—comparison of homologous sequences across
individuals—but these approaches employ very different modes of
inference, and as such the details of a particular experiment dictate
optimal marker resolution (Figure 1). To address the need for
flexibility in marker number, we describe a next-generation
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sequencing-based method for determining individual sequence
genotypes that can be tuned to sample a large range (from
hundreds to hundreds of thousands) of randomly distributed
regions genome-wide.

The plummeting cost and skyrocketing throughput of DNA
sequencing has begun to enable sequencing of entire genomes of
study populations of some focal species [1,2]; however, even in
traditional model species (e.g., humans, laboratory mice, and
Drosophila) resources for complete genome resequencing of large
numbers of individuals by single investigators are still limited. As
nearly all population and comparative analyses depend on an
increasing number of individuals or samples for statistical power,
several methods have emerged to increase the number of
individuals sampled for the same resource investment by reducing
the fraction of each individual genome sequenced. The crucial
hurdle that must be overcome in reducing sampling for each
individual is ensuring that the same (homologous) regions are
examined between individuals. An early solution to this problem
took advantage of sequence spectficity of restriction endonucleases
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Figure 1. A flexible genotyping method can be used to optimize the number of genetic markers for a specific experimental
approach in a given biological system. Segregating genetic markers are used to make inferences about historical processes (e.g., phylogenetic
relationships, population structure) and functional mechanisms (e.g., genotype-phenotype mapping), but the optimal number of markers (fraction of
the genome) needed to achieve a desired level of resolution differs based on both the experimental approach and the specific biological system-the
number of genetic markers needed to recover relationships among populations or species is related to divergence among groups (e.g., more recent
or more rapid events require more variable loci); the number of markers required for optimal resolution in phenotype-mapping experiments
(conducted in laboratory crosses or pedigreed wild populations) is a function of the number of recombination events captured in the pedigree; the
number of markers used in association mapping or selection scans in wild populations is determined by genome-wide levels of linkage
disequilibrium, which is largely dictated by demographic history. Recent methods combining reduced representation library construction and next-
gen sequencing (i.e.,, RADseq [6]) target an intermediate number of regions (shown schematically above). We expand on this approach to provide
marker sets ranging from 100s to 100,000s of regions at low cost with no requirement of prior genomic data (ddRADseq; double digest RAD

sequencing).
doi:10.1371/journal.pone.0037135.g001

to construct a “reduced representation” sequencing library for
polymorphism discovery [3]. While initially limited to SNP
discovery rather than individual genotype determination by the
cost and throughput of Sanger sequencing, later studies using a
similar approach capitalized on high-throughput massively parallel
sequencing such as 454 (454 Life Sciences, Branford, C'T) and
Genome Analyzer (Illumina, Inc., San Diego, CA) and reported
both reliable SNP discovery and genotyping [4,5]. Second-
generation sequencing of DNA libraries comprised only of regions
adjacent to restriction sites was later dubbed Restriction Associ-
ated DNA sequencing (RADseq; Figure 2A; [6] and developed
further in [7,8]). More refined methods have since emerged (e.g.,
Multiplexed Shotgun Genotyping [MSG]; [9]), but rely on having
a complete reference sequence available. Subsequently, studies
extended RADseq to species that lack a reference genome
sequence, but have restricted variant discovery to only those
regions that contained at most one or two polymorphic sites [10—
12].

While these approaches permit genotyping of multiple individ-
uals with substantially reduced sequencing investment, they are
limited in their ability to allow researchers to tune the fraction of
genome sampled (i.e., to genotype only the number of markers
needed for a given experiment). Furthermore, while the RADseq
method 1s suitable for systems that lack a sequenced reference
genome, the existing computational tools for analyzing resulting
data perform with relatively poor efficiency. In published examples
of RADseq data analyzed without a reference genome [10-12],
approximately half of the sequence data in each case was
discarded because the analysis was not robust to error in sequence
reads, and an additional ~30-50% of loci were discarded due to
the presence of more than 1-3 variable sites in each region. In
addition to inefficiency, including only reads below a set number
of nucleotide differences between haplotypes at a locus introduces
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bias in these data, removing rapidly diverging regions and
complicating analyses such as phylogenetic rate and coalescence
time estimation [13-16]. Thus, the ability to optimize the number
of loci sequenced and maximize the number of sequence reads
incorporated in the analysis, and to take advantage of multiple
sites per locus would improve both the efficiency and utility of this
approach.

To increase the breadth of RADseq applications, we have
elaborated on the method described by Baird et al. [6] by
eliminating random shearing and explicitly using size selection to
recover a tunable number of regions, which are distributed
randomly throughout the genome. Moreover, to maximize our
ability to multiplex (i.e., increase the number of samples per
sequencing lane), we also have developed a two-index combina-
torial tagging approach (e.g., n * m individuals using n+m indices)
and an accompanying computational analysis toolkit and light-
weight data management component to facilitate high-order
multiplexing of many hundreds of individuals. We also developed
a graph clustering-based pipeline to maximize sequence read
inclusion in analysis and permit detection of orthologous
haplotypes regardless of divergence (i.e., without arbitrary
similarity requirements), thereby improving analysis sensitivity
and efficiency. Our software pipeline utilizes a novel approach for
filtering resulting loci independent of coverage depth and converts
the resulting haplotype multiple alignments into standard SAM/
BAM format for downstream analysis, such as variant detection
using the Genome Analysis Toolkit [17] or samtools [18]. This
method has proven inexpensive (i.e., fractions of a penny per
individual per site), rapid (i.e., approximately 8 hours of hands-on
time), requires little starting material (i.e., 100 ng of DNA), and is
suitable for high-throughput applications (all steps can be carried
out in microtiter plates). In addition, this method can be
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Figure 2. Double digest RAD sequencing improves efficiency and robustness while minimizing cost. (A) Traditional Restriction-Site
Associated DNA sequencing (RADseq) uses a single restriction enzyme (RE) digest coupled with secondary random fragmentation and broad size
selection to generate reduced representation libraries consisting of all genomic regions adjacent to the RE cut site (red segments). (B) Double digest
RAD sequencing (ddRADseq), by contrast, uses a two enzyme double digest followed by precise size selection that excludes regions flanked by either
[a] very close or [b] very distant RE recognition sites, recovering a library consisting of only fragments close to the target size (red segments).
Representation in this library is expected to be inversely proportional to deviation from the size-selection target, thus read counts across regions are

expected to be correlated between individuals (yellow and green bars).

doi:10.1371/journal.pone.0037135.g002

employed, and its results efficiently analyzed, with no prior
knowledge of genome sequence.

Methods

Double Digest Restriction Associated DNA (ddRAD)
Sequencing

We have developed a protocol that builds on the RADseq
method [19] but which differs in two principal respects (Figure 2).
First, our method eliminates random shearing and end repair of
genomic DNA (an advantage shared with a family of partially
overlapping protocols such as MSG, CrOPS, and other recent
RADseq derivatives [9,20,21]). Instead, we use a double restriction
enzyme (RE) digest (i.e., a restriction digest with two enzymes
simultaneously) that results in at least five-fold reduction in library
production cost-complete ddRADseq libraries cost ~$5 per
sample, while the necessary enzymatic steps following the initial
restriction digest and ligation in random shearing RAD libraries
alone introduce a cost of ~$25 per library (NEB, Ipswich, MA).
Furthermore, the elimination of several high-DNA-loss steps
permits construction of ddRAD libraries from 100 ng or less of
starting DNA. Second, we introduced a precise selection for
genomic fragments by size, which allows greater fine-scale control
of the fraction of regions represented in the final library (see
results). By combining precise and repeatable size selection with
sequence-specific fragmentation, double digest Restriction-Site
Associated DNA sequencing (ddRADseq) produces sequencing
libraries consisting of only the subset of genomic restriction digest
fragments generated by cuts with both REs (i.e., have one end
from each cut) and which fall within the size-selection window
(Figure 2B). This combination of requirements can be tuned to
generate libraries consisting of fragments derived from hundreds to
hundreds of thousands of regions genome-wide.

Precise, repeatable size selection offers two further advantages.
First, because only a small fraction of restriction fragments will fall
in the target size-selection regime (<5% in conditions described
here), the probability of sampling both directions from the same
restriction site is low. This reduces “duplicate” (i.e., immediately
neighboring) region sampling, which effectively halves the number
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of reads that are required to reach high-confidence sampling of a
SNP associated with a given RE cut site. Second, shared bias in
region representation favoring fragments closest to the mean of
size selection, in turn, biases independent samples (e.g., from
different individuals) towards recovering the same genomic regions
(Figure 2B). Because of this correlated recovery, regions are “filled
in” with reads in approximately the same order across all
individual samples, and samples with read recovery counts below
saturation will still share a significant number of well-covered
regions (“Experimental ddRADseq results” below; Analysis S1
Supporting Figure 4; Analysis S1 “Region recovery: ddRADseq
vs. random shearing”). Both of these properties make the
ddRADseq method robust to under-sampling with respect to read
counts, which is a commonly observed problem arising from
unequal read representation across individual samples in pooled
sequencing experiments [9,22,23].

Sample Multiplexing via Combinatorial Indexing

The double RE digest and precise size-selection of genomic
fragments approach described here permits tuning of the number
of regions recovered across several orders of magnitude (Table 1;
“Results” below). As the per-base sequencing depth required for
genotype determination is constant, the necessary sequencing
investment for one individual or sample is inversely proportional
to the total number of regions sampled. For example, if a
combination of restriction digest and size selection efficiently
recovered fragments derived from 10,000 regions genome-wide,
an average of 20x coverage could be achieved at an investment of
200,000 sequence reads, which would permit sequencing of over
1000 individuals in a single Illumina HiSeq 2000 lane (based on
common observation of average read counts exceeding 200 M
reads per lane). Furthermore, as costs of library construction by
double digest are five to ten fold less than random-shearing
methods (due to the cost of shearing and enzymatic end-repair),
construction and sequencing of individually indexed libraries for
thousands of samples is financially feasible (i.e., a few dollars per
individual). Thus, ddRADseq permits construction of highly
multiplexed libraries, due to the ability to decrease read count
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Table 1. Simulated region recovery and optimal per-individual read investment demonstrate marker set flexibility.

Genome (GB) Sbfl-EcoRlI

Sphi-EcoRI

EcoRI-Mspl Sphl-MIluCl Nlalll-MluCi

Human (Homo sapiens) 3.10 1 (0.01% 34)
Rat (Rattus norvegicus) 272 1 (0.01% 24)
Mouse (Mus musculus) 2.72 1 (0.01% 26)
Corn (Zea mays) 2.07 0.7 (0.01% 15)
Lizard (Anolis carolinensis) 1.80 0.7 (0.01% 15)
Zebrafish (Danio rerio) 1.41 0.4 (0.01% 8)
Finch (Taeniopygia guttata) 1.22 1 (0.03% 31)
Chicken (Gallus gallus) 1.1 0.9 (0.02% 18)

Stickleback (Gasterosteus aculeatus) 0.46 0.3 (0.02% 7)

Fugu (Takifugu rubripes) 0.39 0.3 (0.02% 6)
Limpet (Lottia gigantea) 0.36 0 (0.00% 0)
Fire Ant (Solenopsis invicta) 0.35 0 (0.00% 0)
Mosquito (Anopheles gambiae) 0.27 0 (0.00% 0)
Leech (Helobdella robusta) 0.24 0 (0.00% 0)
Honeybee (Apis mellifera) 0.23 0 (0.00% 0)

0.05 (0.01% 1)
0 (0.00% 0)

Fruitfly (Drosophila melanogaster) 0.17
Thale cress (Arabidopsis thaliana) 0.12

10 (0.08% 249)
10 (0.08% 224)
10 (0.09% 248)
6 (0.06% 128)
7 (0.08% 150)
4 (0.06% 82)

5 (0.08% 101)
5(0.10% 111)
1 (0.06% 28)

1 (0.06% 22)
0.6 (0.04% 13)
1(0.06% 22)
0.9 (0.07% 18)
0.6 (0.05% 12)
0.6 (0.06% 13)
0.7 (0.08% 14)
0.3 (0.06% 7)

20 (0.19% 581)
20 (0.18% 492)
20 (0.20% 540)
30 (0.33% 676)
20 (0.31% 550)
10 (0.16% 230)
8 (0.14% 174)
7 (0.13% 148)
7 (0.31% 143)
5(0.29% 114)
3(0.21% 78)

6 (0.35% 125)
4 (0.36% 98)

1 (0.16% 39)

5 (0.48% 109)
3 (0.44% 73)

2 (0.37% 44)

40 (0.30% 915)
40 (0.35% 949)
50 (0.40% 1094)
30 (0.38% 777)
20 (0.27% 488)
20 (0.31% 443)
10 (0.26% 321)
20 (0.41% 450)
9 (0.40% 183)
6 (0.32% 125)
0.9 (0.05% 19)
2 (0.14% 48)

4 (0.34% 91)

1 (0.15% 36)
0.8 (0.08% 17)
2 (0.29% 48)
0.8 (0.15% 17)

200 (1.49% 4619)
200 (1.79% 4874)
200 (1.81% 4905)
200 (1.99% 4114)
100 (1.61% 2904)
100 (1.60% 2254)
100 (1.69% 2066)
100 (1.82% 2017)
50 (2.24% 1032)
30 (2.03% 796)
10 (0.62% 225)
10 (0.83% 295)
20 (1.71% 467)
10 (0.94% 223)

6 (0.57% 131)

10 (1.49% 250)

8 (1.50% 179)

coverage.
doi:10.1371/journal.pone.0037135.t001

requirements in sequencing and reduce cost per individual in
library construction.

Assigning each sequence read from a given experiment to one
of hundreds (or even thousands) of individual samples is a
substantial challenge. Previous studies have reported pooling
strategies that resolve up to several dozen individuals in a
sequencing lane using a “molecular barcode,” consisting of a
short stretch of known sequence immediately adjacent to the
genomic sequence read (12 barcodes were reported in [22]; 96 in
[9]). When more than 12 individuals or samples are pooled,
however, the cost of synthesizing the oligonucleotides used to
make barcoded adapters for library construction presently
exceeds the cost of a lane of Illumina sequencing. Thus, while
in principle it is possible to expand the repertoire and sequence
length of in-line barcodes to fit the required number of
individuals, the requirement for one unique barcoded adapter
(and therefore two DNA oligonucleotides) for each individual
introduces substantial cost and logistical complexity.

Therefore, we developed adapters for ddRAD sequencing
that simultaneously incorporate a combinatorial in-line barcode
(per [22]) and a standard Illumina multiplexing read index
(Protocol S1 Figure 1). In brief, a small number of barcoded
adapters are ligated separately to individual samples in
microplate format. These samples are then pooled following
ligation, but before size selection. Size selection is performed on
each pool of individuals and the resulting libraries are amplified
with a primer that introduces an index that will be read off in a
separate multiplexing read per the standard Illumina multi-
plexed paired-end sequencing protocol. Following PCR with
uniquely indexed primers, multiple pools can be combined and
individuals that share the same in-line barcodes (present in the
adapter and detected as the first bases of the sequencing read)

@ PLoS ONE | www.plosone.org

A single set of reagents coupled with appropriate digest (and sizing) conditions can be used to tune the number of recovered fragments over two orders of magnitude
in most species (see text). Parameters for ddRADseq recovery simulations: “wide” automated size selection (300 bp=*36 bp simulated with mean =300 bp, SD=18 bp;
see Figure 4) with different RE combinations. The values in each cell report: the approximate number of fragments expected (in thousands), the fraction of the diploid
genome that would be sampled in a 100 bp, paired end read (200 bp total), and the expected number of reads (in thousands) required to saturate the regions at >7 x

are distinguished based on the combination of adapter barcode
and multiplexing read indices. This two-tier indexing scheme
thus allows for an exponential increase in uniquely identifiable
samples per pool, while avoiding additional oligonucleotide
synthesis and sequencing costs associated with greater numbers
of longer unique barcodes.

Here, we present oligonucleotide sequences for 48 uniquely
barcoded ddRADseq library construction adapters as well as
corresponding PCR primers for the 12 multiplexing read indices
officially supported by Illumina analysis software (Sequences S1),
but custom analysis permits the use of additional multiplexing read
indices. The 48 adapter barcodes used in this work all differ by at
minimum 2 base positions, which is sufficient to achieve >95—
99% assignment of individual reads (Analysis S1 Supporting
Table 1). All barcoded adapters and indexed PCR primer
sequences provided generate standard Illumina sequencing
libraries with respect to cluster generation and sequencing primers.
Thus, no modifications to standard sequencing protocols are
necessary after the completion of library construction. Further-
more, as all sequencing primer and flowcell annealing sequences
are identical to those in standard Illumina multiplexing libraries,
ddRADseq libraries can be sequenced in any combination of
single-read or paired-end and with or without an Illumina-style
multiplexing read (i.e., using only in-line adapter barcodes to
distinguish samples, following [22]). This indexing approach is
flexible and cost-effective, but the ability to pool large numbers of
samples brings with it a need for tools to facilitate the analysis of
these pooled data.

Identification of Multiplexed Samples

To efficiently “de-multiplex” (match each sequence read to a
single sample) this two-tier indexing scheme and to manage
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thousands of samples in a flexible, portable and lightweight
Laboratory Information Management System (LIMS), we have
developed a simple combination of Google Documents Spread-
sheets and database tools in the Python programming language.
We use this system both to track sample data and metadata (e.g.,
sex, population and pedigree information, phenotype) and to store
and query multiplexing barcode and index data. We associate a
single sample with up to four pieces of information: a flowcell
designator, a lane number, the microplate well address of the
adapter (and therefore adapter barcode), and optionally the
multiplexing PCR primer index. This allows straightforward “de-
multiplexing” of resulting data in the first phase of data analysis.
Briefly, Illumina fastq format files (which have been processed into
separate files based on Illumina multiplex read indices, if
applicable) are further de-multiplexed by matching the first &
bases of the read (where £ is the length of the in-line barcode set,
obtained from Google Spreadsheets LIMS) to the set of barcoded
sequences expected in that lane (or in that multiplex read index
set, from that lane). As all in-line adapter barcodes reported here
differ by at least two positions, we retain any read that aligns, with
one or fewer mismatches, to one and only one valid index and
assign that read to the corresponding individual (and if desired,
write that read data with quality to a new fastq file containing only
reads from that individual). Together, this combination of
inexpensive high-order multiplexing and free, familiar tools for
tracking and resolving samples in a pooled sequencing experiment
serves to substantially reduce barriers of cost and complexity for
genome-scale analyses of large numbers of individuals.

Polymorphism Discovery and Genotyping without a
Reference Genome

Due to short read lengths and high error rates, methods for
analyzing second-generation sequencing data generally require
mapping sequencing reads to a fully sequenced genome from the
same or a very closely related species (divergence must be low
enough to expect that seed conditions for read mapping will be
met even in rapidly evolving sequence, generally <1-5%
divergence overall [24,25]). In contrast to random shotgun
libraries, in which reads are expected to start at all possible
genomic positions, RADseq data consist of reads beginning only at
restriction sites. As such, in the absence of error or polymorphism,
the 10-100¢® reads generated by a single lane of parallel
sequencing should represent no more than 1-100e® unique
sequences depending on enzyme choice, genome size and size-
selection strategy. Thus, we have developed a de novo analysis
strategy, which leverages this inherent reduction in data complex-
ity to perform reference-free variant discovery and genotyping
from ddRAD data.

Short-Read Data Analysis

We begin by collapsing all identical sequences within a lane into
a single record retaining the number of times the sequence was
observed in each individual (based on barcoding and indexing),
the average per-base quality across the sequence in all observa-
tions, and, if paired-end sequencing was performed, the associated
unique paired-read sequences and counts. The resulting set of
unique sequences consist of: single copy sequences with no
nucleotide variation across sampled individuals, sequences repre-
senting segregating haplotypes of single-copy loci, high-copy or
paralogous sequences, and error-containing reads.
RADseq unreferenced analyses have employed a variety of
heuristic approaches to distinguish among these categories, such
as discarding singleton reads to eliminate error-containing reads,
grouping sequences that differ by 1-3 mismatches to identify sets

Previous
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of homologous alleles, and discarding homolog sets consisting of
unusually large numbers of reads to eliminate paralog and
interspersed repeats [10,12]. These approaches are both inefficient
(it is likely that an error that generates a singleton will occur at a
non-polymorphic site and as such, the majority of error-containing
reads are still informative) and arbitrarily restrictive, as insertions/
deletions (indels), polymorphisms and multiple SNP haplotypes
require extension beyond single-mismatch homology.

In place of individual heuristics for read trimming, ortholog
inference, and paralog/repeat pruning, we employ a graph-based
distance clustering approach to recover groups of maximally
similar sequences followed by a novel “ploidy-aware” quality filter.
We first compute pairwise distances between all unique sequences
using  BLAT [26]; while slower than short-read mapping
approaches, this permits detection of more divergent haplotypes,
including indel-containing regions. We then employ the MCL
(Markov Cluster Learning) graph clustering algorithm to discover
groups of unusually similar sequences, analogous to the
OrthoMCL phylogenetic ortholog finding approach [27]. Next,
we separately consider counts of all unique sequences from every
individual in each cluster, and ask what fraction of reads report
haplotypes beyond the ploidy of the organism under study (i.e.,
total counts of each unique sequence after the two most highly
recovered in a diploid, one in a haploid, or four in a tetraploid).
This results in a conservative estimate of either the fraction of
error-containing sequences in a legitimate single-copy cluster, or
the proportional representation of the top paralog in a cluster
which groups sequences from more than one genomic region. Per-
base error rates on the Illumina platform are generally 0.1-1.0%,
therefore we expect 31%¥0.001-31*%0.01 = 3.1-31% of 31 bp reads
to contain an error. In the experiments reported here (see below),
our per-base error rate ranged from 0.18-0.22%, suggesting
approximately one in ten 31 bp reads are expected to contain an
error, and we therefore discard any graph cluster consisting of
more than 10% “non-first-two” sequences for each (diploid)
individual; in other words, we retain only putative ortholog sets for
which greater than 90% of reads were one of the two most
frequent unique sequences in that set for each individual.

After assigning reads and filtering ortholog groups, we perform
multiple alignments of all sequences in a group using MUSCLE
[28]. Multiple alignment has the advantage of both correcting for
register errors introduced early in individual reads, and maximiz-
ing the probability of correctly positioning indels between
haplotypes [29]. Alignments are then written as reference-ordered
SAM/BAM files [18] including @R G and @SQ headers, treating
the most highly represented of the set of longest reads in each
cluster as a pseudo-reference which is written to an accompanying
reference fasta file. Converting ddRADseq clusters to SAM/BAM
with preserved individual and sample metadata facilitates popu-
lation-aware variant detection and genotyping on virtually all
modern short-read analysis platforms, including samtools mpileup
[18] and the Genome Analysis Toolkit (GATK) UnifiedGenotyper
[17]. All new software described in this work is available at http://
github.com/brantp/rtd.

Results

Implementing ddRADseq in an Emerging Model Rodent

We applied the double digest RADseq (ddRADseq) method for
genotyping in an emerging model system, the deer mouse (genus
Peromyscus). First, we developed and validated our method by
genotyping ~ 1000 segregating fixed differences in a cross between
two sister species (P. maniculatus and P. polionotus). Second, we
sought to genotype approximately 10,000 SNPs in natural
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populations of P. leucopus to test the utility of this approach in wild-
caught samples. These proof-of-concept studies are described in
detail below.

RE Choice and Size Selection in Determining the Number
of Sites to be Genotyped

To construct a high-density genetic map in a cross between
sister species P. polionotus and P. maniculatus, we required genotype
information for each animal in our cross at approximately 1,000
markers genome wide. We assumed a lower bound on the rate of
fixed differences between Gy parents of approximately 0.001
[30,31] and for sequence read lengths (and thus sampled region
sizes) of 30 bp, we expected to sample a variable site (fixed
between species) at a rate of one region in 30, which suggested a
target set of 3¢’ regions total. We estimated the appropriate set of
REs and size-selection conditions to recover the appropriate
number of genomic regions by performing simulations using the
sequenced genomes of three distantly related rodents (laboratory
mice [Mus musculus], rats [Rattus norvegicus|, and the thirteen-lined
ground squirrel [Spermophilus tridecemlineatus]; Analysis S1 “prelim-
inary expectation”), which diverged from Peromyscus over 25 Mya
[32]. As the results described below are consistent across all three
comparisons, we report values only for Mus.

We surveyed several combinations of REs, seeking a pair that
would yield between le* and 5¢* fragments (targeting the 3e*
calculation above) when subjected to size selection appropriate for
Ilumina library preparation: a mean fragment size between
200 bp and 400 bp and the size-selection window not more than
50-100 bp wide [33]. We estimated 1.5¢° regions flanking cut sites
for the enzyme EcoRI (both directions from each GAATTC
sequence) in the Mus musculus genome (Ensembl release 61, NCBI
M37), yet sampling only those sites that lie between 275 and 325
bases from a second cut site—Mspl (CCGG)-is expected to yield a
set of just 2¢* fragments (Figure 3; Analysis S1 “preliminary
expectation”). Substitution of one or both REs for one with
different recognition sequence frequencies was expected to modify
the number of fragments recovered at a given size-selection
window over a range of three orders of magnitude (see Table 1).
Changing the size-selection window breadth within the range of
constraints on sequencing libraries was expected modulate the
number of fragments recovered over a range of approximately
twofold (e.g., by doubling the size-selection window to 250-
350 bp, 4¢* regions were expected to be included; Figure 3). Thus,
simulations suggested that tuning two parameters—choice of REs
and size-selection window—should permit optimal marker number
recovery.

As current “‘second generation” sequencing technology is
subject to relatively high error rates (in excess of 0.1%), it is
necessary to sequence each base several times to produce confident
genotypes (in our experience and concordant with [34], greater
than 7 coverage is generally required). To achieve at least this
level of coverage in 1.5¢*2¢* regions size selected from 275 to
325 bp in an EcoRI-Mspl digest of the Mus genome (see above;
Figure 3), we aimed for an average of 10x coverage, which
corresponds to between 2¢ and 5¢” reads for cach individual.
Based on this estimate and an expected yield of 2.5¢” reads per
lane of Illumina GAII sequencing, we prepared pools of 48
separately barcoded individuals per sequence lane.

Experimental ddRADseq Results

To evaluate the performance of this approach, we prepared
libraries as described (Analysis S1 “library construction”) and
tested three methods of size selection. First, we attempted standard
agarose gel electrophoresis on 2% agarose gels followed by
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excision of a band corresponding to the 300 bp; we prepared 48
individuals in six agarose gel lanes. Second, we tested the impact of
changes in size-selection range and the efficacy of automated versus
manual DNA size selection using automated size-selection
technology, Pippin Prep (Sage Science, Beverly, MA; 2% agarose
cartridge). We produced one 48-individual library in four lanes
using automated size selection set to “narrow” setting with a mean
of 300 bp and range of *24 bp (276 bp—324 bp; the narrowest
achievable range for this size mean) and a similar library under a
“wide” setting with a mean of 300 bp and range of %36 bp
(264 bp—336 bp). Bioanalyzer (Agilent, Santa Clara, CA) results
suggested that automated size-selection libraries were substantially
more consistent than gel extraction libraries, but that we were
generally able to achieve peaks within 10 bp of the expected size
using gel excision (data not shown).

Three Illumina GAII sequencing lanes averaged 21.7 M reads,
and after resolving reads by individual barcode (described above),
individuals averaged 440 K reads (see Table S1). As divergence
between Perompscus and a closely related species with a fully
sequenced genome (the house mouse Mus musculus) is substantially
greater than the approximately 5% maximum nucleotide diver-
gence for mapping short reads to a reference sequence (only
28.1% of 84 bp Peromyscus sequences are assigned to unique
positions in the Mus musculus genome by BLAT [26], sequences
with unique matches average 61% identity), the data were
analyzed as described in “Methods; polymorphism discovery and
genotyping without a reference genome”. We observed that
individuals receiving >200 K reads in the narrow size-selection
condition saturated at an average of 14-17 K shared regions
(Analysis S1 Supporting Figure 2A, B). In the wide size selection,
this saturation required 400 K reads and reached an average of
20-24 K shared regions (Analysis S1 Supporting Figure 2B, C).
For automated size-selection libraries, region coverage was highly
correlated between samples (r*:0.71-0.93). The results demon-
strate that it is straightforward to design an experiment (i.e.,
choose REs) targeting a given number of regions using an
approximate expectation for cut site frequency and nucleotide
variability, and then to precisely tune resulting recovery by
modifying size selection. In contrast to automated size-selected
samples, gel excision samples did not appear to saturate in the
range of coverage observed. This is likely because size selection
was Imprecise or ‘“leaky”, with substantial representation of
fragments of lengths relatively distant from the size-selection target
mean. While this prevents fine-tuning in the size-selection step, gel
excision samples nevertheless exceeded 14 K regions for upper-
quartile read sampling (>400 K reads per individual) indicating
that careful practitioners can achieve roughly 50% of the precision
and repeatability of automated DNA size selection.

Comparison of Observed and Simulated ddRADseq

We evaluated the accuracy of original estimates using simple
simulation modeling of these experiments with our three size-
selection regimes. We approximated size selection as a simple
model of normally distributed sampling with mean 300 bp and
unknown variance from the observed fragment size distribution
derived from an i silico RE digest of the Mus genome with EcoRI
and Mspl (see above). We tested goodness-of-fit (Pearson r? of log-
transformed coverage across regions) of our Peromyscus-derived
data for fragment coverage against that calculated from simula-
tions with size-selection sampling distributions
(SD=1 bp 100 bp). Using best-fit size-selection sampling distri-
bution parameters (mean =300 bp, SD=11.5 bp, 17.5 bp and
30 bp for narrow automated size selection, wide automated size
selection and manual gel excision, respectively), we evaluated
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Figure 3. Double digest RAD sequencing provides flexibility in the number of homologous fragments recovered. Changing the
restriction enzyme (RE) or size-selection regime modifies the fraction of genome recovered. Simulation 1 (blue lines, shading): the expected
fragment size distribution for a RE digest with Nlalll and MIuCl (CATG and AATT) in the Mus musculus genome is shown (solid blue line). “Broad” size
selection (300 bp=50 bp) is modeled by a normal sampling distribution (mean=300 bp, SD=25 bp). Under this sampling distribution, 4,900,000
sequence reads (dashed blue line) are expected to cover ~119,000 regions at 7x or greater (blue area). Simulation 2 (red lines, shading): the
expected fragment size distribution for a digest with EcoRl and Mspl (GAATTC and CCGG) is shown (solid red line). “Narrow” size selection
(300 bp=*24 bp; see text) is modeled by a normal sampling distribution (mean =300 bp, SD=11 bp; see Analysis S1 Supporting Figure 1). Under this
sampling distribution, an investment of 315,000 sequence reads (dashed red line) is sufficient to recover ~17,000 regions at 7 x or greater (red area).

doi:10.1371/journal.pone.0037135.9003

simulated region recovery and our real data with respect to: mean
coverage, number of total regions covered at or above 7 X, and the
average number of regions shared between that data point (real
individual or simulation result) and all others where presence in
both is defined as coverage at or above 7x (Figure 4). For both
automated size-selection conditions, all measured properties in
real Perompscus data were extremely well captured by Mus
simulation results, indicating that with precise size selection,
recovery in ddRADseq experiments both within and across
individuals is highly predictable from genomes with even >40%
average sequence divergence (see above) Thus, information from
the genome of a related species (with similar base composition) can
produce accurate estimates of required sequencing effort, thereby
minimizing “over sequencing.”

Simulation results predict the observed sharp saturation of new
regions recovered after approximately 200,000 reads in the
“narrow’ automated selection and 400,000 reads in the “wide”
sizing conditions. This effect is not a result of averaging shared
regions across individuals that received fewer reads overall
(Analysis S1 Supporting Figure 2; Analysis SI “modeling
simulation”). Instead, read and region counts at which this
saturation is observed in real data correspond well with the
transition from logistic to asymptotic accumulation of new regions
with additional sequencing investment in simulations (Figure 4C;
Analysis S1  Supporting Figure 3; Analysis S1 “modeling
simulation”). This saturation represents the optimal investment
of sequencing resources for a particular combination of target
genome, RE digest and size selection, since sequencing beyond this
point primarily recovers poorly sampled regions unlikely to be
shared among individuals. By performing simulations using the
“narrow” and “wide” sampling models trained from our
Perompscus EcoRI - Mspl data, we similarly can predict the
saturation point in region counts and corresponding required read
depth for fragment distributions resulting from in silico digest of any
combination of target genome and restriction enzymes.

Validation of ddRADseq Derived Genotypes in a
Laboratory Cross

We produced the remaining ddRADseq libraries for all
purebred parents, a single F1 individual and 192 F2-backcross
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progeny using the EcoRI/Mspl enzyme pair and “wide” size
selection scheme described above to complete our sampling of
2¢*-3¢* regions from each animal with the goal of identifying and
genotyping ~1000 diagnostic SNP markers. We sequenced all
libraries on an Illumina GAII and analyzed sequence reads as
described (see “Methods™); all analyses reported here use
genotypes from the GATK UnifiedGenotyper [17] with param-
eters QD (quality-by-depth) =6 and GQ (genotype quality) =20
based on optimization in other applications (data not shown).
Because loci that are different between, but fixed within, each
parental species are most informative for QTL analyses, we
screened for markers that met these criteria, and that we could
infer diploid genotypes for at least 150 (of 192) individuals in our
cross. This filter produced 1,886 SNPs in 1,638 unique sequence
regions. We estimated the genotype frequencies of each marker
across all F2 progeny, and also the fraction of recombination
events and LOD score between all marker pairs (Figure 5A). By
varying the maximum fraction of recombination and minimum
LOD score allowed among markers on a single linkage group, we
constructed a linkage map using R/qtl [35] that contained
1,158 SNP markers in 24 linkage groups, consistent with the P.
maniculatus karyotype, with a total length of 1,759.7 ¢cM and an
average inter-marker distance of 1.6 ¢cM (Figure 5B). Our ability
to construct a well-resolved genetic map of total map length
similar to published high-density genetic maps for Mus [36] and
associating the majority of genotyped sites with a number of
linkage groups matching the P. maniculatus karyotype suggests that
the ddRADseq approach efficiently generates high quality
genotypes for laboratory crosses.

De novo Analysis of ddRADseq Data in Outbred

Populations

While library construction and sequencing for outbred wild
population samples can be performed in a manner equivalent to
that described for a laboratory cross, thorough analysis of resulting
data in the absence of a reference genome is substantially more
challenging due to the potentially much greater haplotype diversity
at each locus in the recovered region set. Because our de novo
sequence analysis pipeline is designed to be able to operate at
greater sequence divergence between haplotypes at each genomic
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Figure 4. Recovery of genomic regions in deer mice (Peromyscus maniculatus and P. polionotus) is well predicted by simulation based
on the laboratory mouse (Mus musculus) genome with precise size selection. Simulated data based on the Mus musculus genome (dashed
lines) and actual data from a distantly related rodents Peromyscus maniculatus and P. polionotus (solid lines), both fragmented with EcoRI and Mspl
recognition sites. Sampling from the Mus genome is drawn from a normal distribution (mean =300 bp and SD=11.5, 17.5, and 30), which represents
the best match for Peromyscus ddRADseq with size-selection windows of =24 bp (“narrow”, green), =36 bp (“wide”, blue) and +25-50 bp (“gel”,
red) respectively. The narrow and wide selection sets are based on a more precise automated size-selection method (PippinPrep, Sage Science).
Recovery in ddRADseq experiments, both within and across individuals, is highly predictable: (A) Region coverage is highly correlated between
simulated Mus and observed Peromyscus data. Simulations show good fit to automated size selection (median samples from each sizing strategy and
simulation of matched read counts, r* 0.99 and 0.98 for narrow and wide sizing, respectively), but match less well for gel extraction (median r? 0.94).
(B) Simulated data are concordant in mean sequence coverage across fragments as a function of total read depth per individual in all size-selection
schemes (open circles: observed data, dotted line: simulation). (C) The number of regions with coverage =7x as a function of total read depth per
individual, and (D) mean number of regions with coverage =7 x shared with other individuals, show very high concordance with normal sampling
distributions in both narrow and wide automated size selection but are less well fit by any tested sampling distribution for the gel extraction method.

doi:10.1371/journal.pone.0037135.9g004

region, we tested our approach by performing genome-wide SNP
genotyping in wild populations of Peromyscus. We first prepared two
ddRADseq libraries containing a total of 54 wild-caught Peromyscus
leucopus individuals collected from a single population in Louisiana.
Libraries were prepared, sequenced, and analyzed according to
the protocol described with the EcoRI/Mspl enzyme pair, and
“wide” size selection conditions as above (see “Methods”; Analysis
S1 “Genotyping in a wild population”). We sequenced these
libraries in two GAII lanes. Our de novo analysis pipeline recovered
6,199 variable regions, and yielded 15,962 total polymorphic sites
with genotypes for at least 70% of individuals. We next calculated
the distribution of minor allele frequencies (site frequency
spectrum) for this population, which demonstrated consistent
recovery of common variants and the expected roughly exponen-
tial distribution of rare alleles (Figure 5C).

@ PLoS ONE | www.plosone.org

We further explored the applicability of ddRADseq-derived
markers in outbred samples by estimating structure among
several P. leucopus populations. We generated ddRADseq
libraries as above for a total of 92 individuals collected from
four wild populations (Louisiana, Nebraska, Pennsylvania and
Massachusetts, see Analysis S1) and a laboratory population
(derived from North Carolina). Our analysis returned
18,907 SNPs from 7,435 orthologous fragments when we
required 70% completeness. We used these SNPs to run a
genetic principal component analysis (PCA) using the statistical
software package, Eigensoft 3.0 [37] and found 7 significant
eigenvectors (first two shown in Figure 5D). Genetic principal
components support the expected geographic isolation as the
dominant source of structure among these samples.
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Figure 5. Discovery and genotyping of ddRADseq markers in a laboratory cross and wild populations without a reference genome.
ddRADseq was used to identify SNPs between two Peromyscus species, neither of which had a genome sequence available, that were crossed as part
of a QTL experiment. This yielded 1158 unique markers that were fixed within, but different between, the parental species. By calculating the fraction
of recombinant genotypes and LOD of linkage between markers, we generated (A) 24 groups of strongly linked markers, heatmap colors represent
strength of linkage in both recombination frequency (upper left) and LOD (lower right) between all pairs of markers; and (B) a genetic map with
average inter-marker distance of 1.6 cM. ddRADseq was also used to genotype wild-caught and lab-reared individuals of P. leucopus. Our ddRADseq
method permitted successful genotyping of wild-caught individuals even when the allelic variants within a population are unknown. (C) Estimated
site frequency spectrum of a wild population of P. leucopus caught in a single Louisiana population. (D) Genetic structure between five populations of
P. leucopus. Dots represent individuals (N=92) and color indicates the states from which individuals were collected: LA = Louisiana; NE = Nebraska;
PA =Pennsylvania; MA = Massachusetts; NC = North Carolina.

doi:10.1371/journal.pone.0037135.9g005

These applications of the ddRADseq approach not only
demonstrate its success in species lacking a complete genome
sequence, but also highlight a key advantage to our MCL
clustering analysis: fewer than 20% of the informative SNP
markers used in the outbred population analyses described
above reside in single-SNP regions, and less than half in
<3 SNP loci, which would have rendered the majority of that
dataset unavailable to previous reference-free methods such as
Stacks [38] as employed by analyses to date [10-12]. By not
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requiring a threshold identity for assignment of homology in our
de novo analysis, we were able retain more sequence data, avoid
bias against rapidly diverging or polymorphic regions, and
incorporate longer reads than otherwise would have been
possible.

Discussion

Here we describe a combination of laboratory and computa-
tional methodology to permit highly repeatable and tunable
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recovery of hundreds to hundreds of thousands of randomly
sampled regions from a target genome. In comparison to
traditional RADseq methods, ddRADseq library preparation is
less expensive and rapid (<8 hours hands-on time for dozens to
hundreds of samples), completely compatible with microplate
format, and can be performed using limited amounts of genomic
material (<100 ng). Furthermore, due to the removal of random
shearing (and therefore random recovery), correlated recovery of
regions across individuals results in increased robustness to
variability in read count (see “Results”; Analysis S1 Supporting
Figure 4). As sequencing depth required to reach saturation is a
direct function of the number of regions sampled (Table 1), the
number of individuals which can be genotyped in a single
sequencing lane is inversely proportional to the number of regions
recovered. For example, we chose to recover 15-25 K regions in
one experiment described here, for which saturation was achieved
at less than 500 K reads per individual.

Combinatorial Multiplex Indexing

For experiments other than genome-wide association studies,
whole-genome scans for selection and population differentiation,
recovery of tens of thousands of regions is often sufficient. Our
simulations suggest that per-sample investment of less than 1 M
reads in the appropriate digest and size-selection strategy is
sufficient to achieve coverage enabling confident genotype
determination at such region counts, which means that with
modern sequencing capacity (20-200 M reads per lane, depending
on technology) dozens to hundreds (and potentially thousands) of
individuals can be pooled in a single sequencing lane. To facilitate
inexpensive construction of libraries with large numbers of
individuals, we developed a combinatorial indexing scheme that
requires no modification to standard Illumina sequencing. Our
applications of combinatorial indexing have combined =192
samples in a single Illumina HiSeq lane, with a recent example
lane yielding 167 M reads in total amongst 192 individuals with
median individual read count of 0.7 M reads and interquartile
range of 0.3 M-1.2 M reads. Coeflicients of variation across all
pooled-sampled sequencing lanes range from 0.4-0.8 for all
experiments performed to date. Thus, generating an average of
double the desired minimum read count has proven sufficient to
completely cover most or all samples. To simplify the process of
handling sequence data generated from hundreds of pooled
individuals we have implemented a lightweight LIMS for tracking
and de-multiplexing samples based on the freely available Google
Documents Spreadsheet platform.

Reference-free RADseq Analysis by Graph Clustering
Analysis of RADseq data in the absence of a reference genome
has been performed in a small but growing collection of studies
employing the open-source Stacks package [38]. Stacks includes a
full suite of tools for tracking pooled samples and performing the
“off-by-N"* assignment of alleles to a locus described above, as well
as sample-by-sample genotyping and data storage. While the
Stacks package is a complete and robust solution tailored to de novo
analysis of random shearing RADseq data, we were motivated to
develop our own implementation for four principle reasons. First,
we wished to avoid an arbitrary sequence distance threshold
between alleles for a single locus, as described above. Second,
Stacks filters paralog and high-copy loci by read coverage,
assuming random coverage across loci; this assumption is violated
by the correlated recovery observed in ddRADseq, necessitating
development of the ploidy-based filter (see “Methods”). Third, to
increase efficiency of ddRADseq de novo analysis we sought to
incorporate error-containing reads in our analysis rather than
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filtering these at the outset. Fourth, we wanted to be able to take
advantage of recent improvements in statistical methods for
genotype calling from short read data, such as multiple sample
genotyping in the GATK program [17]. Our computational
pipeline for genotyping in the absence of a reference genome
achieves approximately 30-50% higher sensitivity in read
incorporation than observed in the previously described applica-
tions of Stacks (62-75% of reads fall into well-recovered regions;
greater than 68% for all automated size-selection samples,
compared to approximately 50% [10]). Because error, frameshift,
and low-quality containing reads are incorporated by the
clustering process, our de novo analysis approaches the efficiency
of read incorporation observed in reference-mapping approaches
such as BWA (~80% mapping for 32 bp reads [39]). In addition,
graph clustering permits grouping of haplotypes with any number
of mismatches, provided the global similarity relationships among
all reads support significant sequence homology between them; for
instance, in an outbred wild population this increased sensitivity by
five fold over single-mismatch haplotype pairing. Our analysis also
produces standard SAM/BAM formatted alignments that retain
sequence read quality scores. This feature permits employment of
quality-adjusted metrics in variant detection (such as quality-by-
depth in the Genome Analysis Toolkit [17]) to prevent reduction
of specificity in resulting genotype data, and facilitate accurate
genotype determination even at relatively low read investment
(>7x; [34]). We combined these features to simultaneously
discover and genotype thousands of fixed differences in a
laboratory cross and tens of thousands of SNPs in wild population
samples for ~$20 per sample total (<$5 sample prep, $15
sequencing) on the Illumina GAII platform and well under $10
(<$5 sample prep +<$5 sequencing) on the Illumina HiSeq 2000
platform.

Conclusions

The ddRADseq method described here, in conjunction with
huge strides in both the throughput of sequencing (e.g., Illumina
HiSeq 2000) and in genotype analysis based on short read
sequence data (e.g., GATK UnifiedGenotyper, samtools) permits
high throughput simultaneous discovery and genotyping of
sequence polymorphism either with or without an existing
reference genome. Compared to existing RADseq approaches,
ddRADseq permits greater flexibility and robustness in region
recovery, and a substantial decrease in cost, required genomic
material from samples and researcher time investment. Here, we
provide a detailed protocol for the laboratory methods as well as
an open-source computational pipeline (based on freely available
software), which we hope will make this method accessible and
widely applied to a range of biological problems in a diversity of
organisms.

Supporting Information

Protocol S1 Detailed Protocol. Complete laboratory proto-
col for design and execution of ddRADseq studies. The up-to-date
protocol is also available at http://www.bit.ly/ddRAD.

DOC)

Sequences S1 Oligonucleotide sequences. This Microsoft
Excel spreadsheet documents all sequences of PCR primer and
adapter oligonucleotides for experiments described in this work.

(XLS)

Analysis S1 Additional details on simulations described in this
work. Also includes parameter values and run conditions for proof-
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of-concept analyses in laboratory cross and wild population
experiments.

(PDF)
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Objective

Determine the genetic structure and origin of Hawaiian green sea turtles
(Chelonia mydas) by haplotype through mtDNA analysis. Samples for this experiment
was generously provided and permitted by Dr. Peter Dutton, Program Leader of the
Marine Turtle Genetics Program and George Balazs, Team Leader Zoologist of the
Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration

(NOAA) USA.

Morphological Systematics and Taxonomic History

Kingdom: Animalia

Phylum: Chordata

Class: Reptilia

Order: Testudines

Family: Cheloniidae

Genus: Chelonia

Species: mydas (NOAA Fisheries, 2012)

Direct child taxa Subspecies:  Chelonia mydas agassizzi (Appeltans, et al.)

Linnaeus in 1758 was the first to identify the green marine turtle as (7estudo
mydas); with further taxonomic binary nomenclature, Schweigger in 1812 renamed the
green turtle as (Chelonia mydas), the Latin identity used presently (Fish and Wildlife
Service, 2012). The genus (Chelonia) has a controversial taxonomic history that has

been debated by researchers for over a century, encompassing the argument of whether



the genus (Chelonia) should be split into two groups (Chelonia mydas) and (Chelonia
agassizii) Bocourt (1868), the latter recognized by some authors as (Chelonia mydas
agassizii) (Pritchard, 1999; Bonin et al., 2004). For the purposes of this report (C.
agassizii) and (C. mydas) will be used. To adequately assess conservation priorities
amongst an endangered species, taxonomic rank is critical (Karl & Bowen, 1999). In
debate of this taxonomic separation, Pritchard (1999) has proposed three possibilities for
(C. agassizii): it is a color morph; a subspecies of (C. mydas); or it deserves its own
designation as a full species. Karl and Bowen (1999) argued that while (C. agassizii) can
be identified at a basic level, morphological tendencies of color and size will vary
throughout the distribution of (C. mydas) and this genus would be more accurately
described at the population level.

Distinct vernacular names for sea turtles will vary depending on the cultural
context, geography and political boundaries. Typically, the black turtle (C. agassizii)
may also be recognized as Eastern Pacific Green Turtle; Tortuga negra and Tortuga
prieta (Spanish); Tortue verte du Pacifique (MEDASSET, 2006) and Tortue noire
(French) (Pritchard & Mortimer, 1999). The green turtle (C. mydas) may be commonly
named as: Caguama prieta and Tortuga blanca (México); “yellow turtle” (Galapagos
Islands) (Pritchard, 1999); Tortuga Verde (Spanish); Tartaruga-verde and Aruand
(Portuguese); Tortue comestible, Tortue franche and Tortue verte (French); and Honu
(Hawaiian) (IUCN, 2012). For a further list of sea turtle common names refer to the
World Registry of Marine Species (WoRMS).

Geographically, the green sea turtle (C. mydas) is distributed through

circumglobal tropical regions (Karl & Bowen, 1999) extending through the Atlantic



Ocean, Indian Ocean, Mediterranean Sea and Pacific Ocean; nesting in over 80 countries,
typically in oceans where water temperatures surpass 20°C (Bonin, Devaux, & Dupré,
2006; IUCN, 2004; TUCN, 2012). Northern extensions of the green turtle’s distribution
may be Northern Ireland, Nova Scotia and southern extensions include northern New
Zealand and the coast of Argentina, possibly occupying coastal waters of at least 500 km
wide and nonexistent throughout the Pacific coasts of the North, Central and South
Americas where (C. agassizii) is present (Bonin et al., 2004). The black turtle (C.
agassizii) is found in the eastern Pacific tropical and temperate regions nesting on sites
between the Galapagos Islands and Michoacan and Revillagigedos Islands, México
(Chassin-Noria, Abreu-Grobois, Dutton, & Oyama, 2004; Karl & Bowen, 1999).
Northern limits of the black turtle may reach British Columbia extending to Chile with
the inclusion of the Galapagos at its equatorial boundary (Bonin et al., 2004).
Differences in morphological characteristics of (mydas-agassizii) have lead
systematists to agree that there is a significant difference between the two turtles
(Pritchard, 1999). The black turtle is characterized by its domed, heart shaped carapace,
marked incurving of the posterolateral shell margin above the hind limbs and dark gray
pigmentation on the plastron (Parker, Dutton, & Balazs, 2011; Pritchard, 1999; Chassin-
Noria et al., 2004). The head may have scalation, finer and darker than what is found in
other species (Bonin et al., 2004). Compared to (C. mydas) it has been found to be more
petite in size with a slight dorso-ventral expansion (Karl & Bowen, 1999) and females lay
smaller clutches of eggs (Chassin-Noria et al., 2004). The green turtle has a light brown
to black rounded carapace with thick juxtaposed scutes forming a flat shell and a cream

to yellow plastron (Parker et al., 2011; Bonin et al., 2004). Adults can weigh between



140 to 160 kg with exceptionally large individuals surpassing 230 kg in weight (Bonin et
al., 2004).

In attempt to decipher the geographic variation of the green turtle, Kamezaki and
Matsui (1995) analyzed the skull morphology of individuals spanning across the globe.
In carapace and skull lengths, (C. mydas) appeared to be smaller in the northern
hemisphere compared to the southern hemisphere but skull lengths did not change based
on climatic variations. Skull width could not be separated into two geographic groups
but showed a climatic inclination for skull width to increase in size in accordance with
average sea surface temperature regimes. Even though green turtle skulls found in the
Galapagos is unique, supported by canonical discriminant analyses, a single characteristic
cannot differentiate these samples from others. Therefore, it was concluded that the
eastern Pacific population of (C. mydas) be considered as a subspecies (C. mydas
agassizii) and not as a distinct species (Kamezaki & Matsui, 1995).

Other vertebrate species such as the Red footed Booby (Sula sula) and numerous
fish species will vary in coloration sympatrically without evidence of gradation amongst
the population and not obtain nomenclatural designation due to their ability to reproduce
morphologically identical individuals with color morphs, lacking a separation in
geography (Pritchard, 1999). The variability of the organism’s color morphs may depend
on its life stage and environmental exposure. Amongst vertebrate taxas, even if the
molecular results are in alignment with zoogeography boundaries, it may not correspond
to the phylogenetic relationships within the taxa discussed (Kamezaki & Matsui, 1995).
Comparably, the sea turtle genus (Lepidochelys) has two distinct subspecies (L. kempii)

Kemp’s ridley and (L. olivacea) Olive ridley, which cannot easily be identified



morphologically but can be separated by coloration (Pritchard, 1969), have gained

taxonomic recognition based on genetic analysis solely (Karl & Bowen, 1999).

Genetic Evaluation of (Chelonia mydas)

Although the separation of the two (mydas-agassizii) falls within traditional
criteria for morphological divergence and reproductive isolation (Pritchard, 1999),
mtDNA analysis for matriarchal phylogeny showed no distinguished evolutionary
evidence between the two turtle morphs (Karl & Bowen, 1999). Mitochondrial DNA
analysis displayed a low level of genetic variability and was found to have a slow, turtle’s
pace evolutionary rate compared to other vertebrate species. But in nonturtle species,
phylogeographical representation corresponded with genetic separations in turtles (Avise,
Bowen, Lamb, Meylan, & Bermingham, 1992; Karl & Bowen, 1999).

The black sea turtle (C. agassizii) through molecular analysis was found to be a
regional melanistic population within the Pacific clade of (C. mydas) (cited in Chassin-
Noria, Abreu-Grobois, Dutton, & Oyama, 2004; Dutton, Davis, Guerra, & Owens, 1996;
Karl & Bowen, 1999). Molecular phylogeny on sequences of the ND4-Leucine tRNA
and control regions of mtDNA showed that (C. mydas) within the Atlantic and Pacific
Oceans, populations were paraphyletic in reference to the black turtle, deeming the
necessity to reevaluate the Pacific (Chelonia) populations (Dutton et al., 1996). Genetic
analysis based on single-copy nuclear loci for male-mediated gene flow did not show
clustering of (C. agassizii) (Karl & Bowen, 1999), but levels of diversity of single-copy
loci were low with limited inferences (Roberts, Schwartz, & Karl, 2004). Variability of
microsatellite loci displayed male-mediated gene flow, which confirms that a genetic

divergence between the Atlantic and Pacific populations exists (Roberts et al., 2004).



The genus (C. mydas) was found to have high frequencies of single nucleotide
polymorphisms (SNPs) and homoplasy, possibly a rich source of variable loci within the
genome (Roberts et al., 2004; Roden, Dutton & Morin, 2009a). Roden et al., (2009a)
designed the first SNP markers for genotyping green sea turtles, which can potentially be
used to evaluate populations on a regional basis and connections between populations.
Genotyping marine turtles through SNP can be a rapid procedure that can avoid the
irregularity of microsatellite genotypes due to the differences in laboratory technologies
and scoring techniques (Roden, Dutton, & Morin, 2009b).

The development of tetranucleotide microsatellite loci markers for green turtles
will also contribute to the evaluation of individuals and regional populations (Shamblin,
Berry, Lennon, Bagley, Ehrhart, & Nairn, 2012). Sequencing complete mitogenomes of
all seven species of sea turtles from geographical regimes and limits has shown a
variability in the ATPS8 gene length and a exceptionally variable site in ND4 by a proton
translocation channel in a protein revealing phylogeographic patterns and relationships
amongst all sea turtles, illustrating the intricacies of sea turtle diversity, phylogeography
and molecular evolution interpretation (Duchene, Frey, Alfaro-Nuiez, Dutton, Gilbert, &
Morin, 2012). Complete mitogenome analysis is able to provide more consistent
evolutionary divergence times than single mitochondrial markers. Positive selection in
regions of the genome may be due to environmental adaptation and should be considered
in molecular evolutionary processes and phylogenetic development. The occurences of
speciation and its connection to geological processes such as the development of the

Panama Isthmus that served as a migratory barrier between the Pacific and Atlantic



Oceans and changing global oceanic temperature regimes is key to deciphering the

timeline of the evolutionary history of sea turtles (cited in Duchene et al., 2012).

Hawaiian Archipelago: a Regional Designation

On a regional basis (Chelonia mydas) of the Hawaiian Islands has been
recognized as a single closed genetic stock, endemic to the Hawaiian archipelago
(Bowen, Meylan, Ross, Limpus, Balazs, & Avise, 1992). Green sea turtles are
distributed through the entire Hawaiian island chain which consists of more than 130
islands, coral reefs and coastal foraging grounds spanning across 2400 km from the
Northwest region, Kure Atoll to the Southeast, Hawaii Island (Dutton, Balazs, LeRoux,
Murakawa, Zarate, & Martinez, 2008; IUCN, 2012; Chaloupka & Balazs, 2007).
Resident female green turtles migrate every few years to French Frigate Shoals (FFS), the
main nesting rookery to lay their clutches of eggs on the sandy islands (Balazs &
Chaloupka, 2004a).

Harvesting of green sea turtles started in the 19" century during exploratory
expeditions in the Northwestern Hawaiian Archipelago. Reduction of turtle stocks was
mainly due to nesting habitat destruction and over-exploitation of eggs and nesting
female turtles, including a commercial harvest, which persisted from the 1940s to 1970s.
The harvesting of adults ended in 1974 when stocks were depleted due to the US
Endangered Species Act (cited in Chaloupka & Balazs, 2007). The Hawaiian green sea
turtle population has been reportedly on the rise since conservation efforts have been
established. Since 1973, annual surveys of turtles nesting at FFS have been orchestrated
(Balazs & Chaloupka, 2004a) and populations have been observed to rise and recover

since the late 1970s regardless of the regional outbreaks of fibropapillomatosis (disease



associated tumours) and incidental take from Hawaii inshore fisheries (cited in
Chaloupka & Balazs, 2007). Social pressures exists surrounding the possibility of
opening a selected cultural harvest of green turtles in Hawaii but this topic is still in its
early developmental stages. Chaloupka and Balazs (2007) investigated the recovery and
harvest potential of Hawaii green sea turtles through Bayesian state-space modeling, a
surplus-production model since there was no age class specific harvest and demographic
background available. This study found that a restricted cultural harvest may be
demographically feasible but stock predictions past 25 years may lead to uncertain
population estimates since marine turtles are a long lived species with late sexual
maturation (Chaloupka & Balazs, 2007). Based on age specific growth rates estimated
age of maturity for four southeastern populations are between 35 - 40 years and in
northern populations at Midway potentially > 50 years (Balazs & Chaloupka, 2004b).
Recently, in August 2012, the Hawaiian population of (C. mydas) ITUCN Red List
criteria and status was revised from “endangered” to a “species of least concern” (IUCN,
2012). The recognition as a Regional Management Unit complies with the [UCN Red
List assessment criteria for being defined as an independent subpopulation (Wallace et
al., 2010). Some concerns are expressed regarding the delisting of this ancient species
due to the risk associated with the isolation of the endemic Hawaiian population and its

vulnerability to environmental degradation and climatic variation.

Genetic Stock of Hawaii Green Sea Turtles
Evaluation of stock composition through stock mixture analysis at five feeding
ground sites has proven that the Hawaiian population is composed of one genetic stock

originating from the FFS, with a mean estimate of 99.9%. From mtDNA sequences, six
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haplotpes have been identified amongst 788 green sea turtles sampled throughout the
Hawaiian Islands from nesting and feeding ground populations and Hawaii strandings,
with three turtles with haplotypes not found at FFS. This suggests that Hawaii is
sometimes frequented by turtles from the eastern and western Pacific Oceans. Even
though Hawaiian (C. mydas) populations have been identified to be a genetic distinct
population, stock compositions at foraging grounds within the Hawaiian Archiepelago
have not been defined. Populations are often characterized by rookery or clusters of
adjacent rookeries in a geographical area (Dutton et al., 2008). The potential for
exposure to mixed genetic stocks is high because foraging grounds may spand over grand
georgraphical areas. Individuals from FFS, one rookery will disperse to various foraging
grounds (Dutton et al., 2008). Only a few Hawaii green turtles have been recorded
beyond the Hawaiian Islands: Japan (1), Phillipines (1) and Marshal Islands (1) (IUCN,
2012). Recent studies have shown that foraging ground aggregations are composed of

mixed stock origins varying at each location (Dutton et al., 2008).

Materials and Methods

Field sampling. MtDNA control region sequences were taken from frozen tissue
samples and anal swabs from live turtles. Tissue samples (5) were collected from frozen
turtles in freezer storage retrieved by the University of Hawaii at Hilo (UHH) Sea Turtle
Stranding Program. Small square samples approximately 6 x 6 mm and 2 - 4 mm in
depth were collected using a 6 mm chisel, small hammer and tweezers. Samples were
taken from the neck region to ensure accessibility to soft tissue and uniform collection

methods on all turtles. Samples were weighed and placed in plastic test tubes with 20%
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Dimethyl sulfoxide (DMSO) saturated with salt for storage (Dutton & Balazs, 1995).
The Marine Turtle Stranding Program at UHH is responsible for collecting sea turtles that
have stranded in the Hilo vicinity. Turtle corpses are stored in the UHH freezer until they
are flown to Oahu for necropsies conducted by NOAA officials. On a yearly basis
George Balazs facilitates green sea turtle live captures for tagging (PIT tag and flipper
tags (2)) at Punalu’u, Big Island with the UHH Marine Option Program. During turtle
morphometric sampling procedures, anal swabs were collected using Whatman Omni
swabs. The swabs were air dried and stored in individual paper sleeve at room
temperature until they were used for DNA extraction.

Laboratory analysis. For laboratory processes see Dutton et al., (2008). Notable
differences involve using the DNeasy 96 Blood and Tissue Kit for purification of total
DNA. PCR amplification of mtDNA was completed by using the primers HDCM?2 and
LTCM2 designed to target 488 bp at the 5° end of the control region of the
mitochondrial genome. One notable difference from following Dutton et al., (2008) lab
procedures, is the template DNAs were amplified in 10 pl and 20 pl instead 50 pl as
recommended. The samples amplified with 10 pl did not transpire in the electrophoresis
in a 2% agarose gel stained with ethidium bromide but the samples with 20 ul were
successful and showed up in the stain perfectly. After the DNA extraction, there was no
notable difference in genetic yield between the two types of samples, when tissue
samples (5) and anal swabs (3) were run through the Nanodrop.

Sequence analysis. The sequences from the identified mtDNA haplotypes were blasted
for relative nomenclature using the National Center for Biotechnology Information

(NCBI), Basic Local Alignment Search Tool (BLAST) website. Sequences were aligned
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with (C. mydas) mtDNA sequence designations on the Southwest Fisheries Science
Center NOAA website using Molecular Evolutionary Genetics Analyses 5.1 (MEGA)

software.

Results

From the eight mtDNA samples of (C. mydas), anal swabs (3) and tissue samples
(5), two haplotypes CmP1 and CmP3 were determined. Haplotypes CmP1 represented
(62.5%) and CmP3 (37.5%) of total samples. The samples from the foraging grounds at
Punalu’u were found to consists of one CmP3 and two CmP1 haplotypes. From five of
the Hawaii stranding turtles frozen tissue samples, two out of five turtles were haplotypes

CmP3 to CmP1 respectively.

Table 1. Sequenced results for the mtDNA analysis of Hawaii green sea turtles (C.
mydas) anal swabs (AS1 - 3) samples from Punalu’u, Big Island and frozen tissue
samples (T1 - 5) of stranded turtles in the Hilo vicinity collected by the UHH Marine
turtle stranding program. The DNA mentioned is the one bp change that occurred at site

# 190 after the forward primer.

No. Sample DNA Haplotype
bp
1 AS1 T CmP 1
2 AS2 T CmP 1
3 AS3 C CmP 3
4 T1 T CmP 1
5 T2 T CmP 1
6 T3 T CmP 1
7 T4 C CmP 3
8 T5 C CmP 3
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Discussion

Dutton et al., (2008) identified three haplotypes most commonly found amongst
foraging grounds in the Hawaii Islands, CmP1 (64%), CmP3 (15%) and CmP2 (10%).
Only one haplotype CmP1 and 11 CmP3 have been identified at the eastern Pacific
rookery Revillagigedos, México and not found at any western Pacific rookeries.
Haplotype CmP2 has only been identified at the FFS breeding site (Dutton et al., 2008).
The haplotypes identified in this study CmP1 and CmP3 are turtles from Hawaii foraging
grounds possibly: Pala’au, Kiholo, Kane’ohe Bay, Midway or Punalu’u, since there is
limited movement of individuals between foraging grounds (Dutton et al., 2008), it is
likely that the turtles sampled at Punalu’u solely forage in this area. Green turtles
strandings and turtles found in foraging grounds in the Hawaiian Islands orignate from
the north central Pacific nesting stock, which convinces the argument that this population
is of a defined regional management unit (Wallace et al., 2010) unique to other
populations in the Pacific Basin. Foraging grounds may be visited by turtles from other
genetic stocks, evident by the three turtles found at foraging grounds with a genetic
composition, haplotype different from what is found at FFS. Mixed stock analysis
confirmed that individuals from Hawaii foraging grounds originate from the FFS nesting
stocks, mean estimated stock mixtures and standard deviations for foraging grounds and
strandings are (0.999, SD = 0.002) for FFS and (0.001, SD = 0.002) for Revillagigedos,
México respectively (Dutton et al., 2008). Turtles with morphological characteristics that
resemble (C. agassizii) and haplotypes typically belonging to the eastern Pacific
populuations have been identified in Hawaiian foraging grounds, one as a stranding and

the other found at Pala’au (Dutton et al., 2008). North of the Hawaiian Islands turtles
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with the central Pacific morphotype have been found to be distributed in these areas and
south of Hawaii, turtles of eastern Pacific morphotypes were detected. One turtle with
the haplotype CmP3 captured in the longline fisheries was found to have morphological

characterisitcs of an eastern Pacific green turtle (Parker et al., 2011).

Conclusions

Green marine turtles (Chelonia mydas) have such a vast geographic range, it is
not surprising that the green turtle has developed phylogenetic morphs and regional
identities within its populations. A geographical overlap between the justified (C. mydas)
and (C. agassizzi) morphs as well as the occurrence of individuals displaying
morphological characterisitcs resembling either morphs is not unusual when considering
other species have proven the capabilities to exhibit such qualities with similar
geographical circumstances. The wide expansion of the Pacific Ocean separating the
Hawaiian Archiepelago and the North American continent creates a geographical void
where the two morphs may interact and cross over, possibly breeding and mixing genetic
stocks. The (C. mydas) and (C. agassizzi) once thought to be allopatric species may share
a part of their life stage from their juvenile years into their adulthood as two sympatric
species, without the occurrence of interbreeding for the most part due to an evolutionary
historical event which caused reproductive isolation between the two. Utilizing AFLP
fragment isolation or genotype sequencing techniques to produce random sequences for
SNPs with the reference to the complete mitogenome as a baseline within and between
regional management units (Wallace et al., 2010) may be ideal in deciphering

evolutionary events as well as genetic variations between populations.
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