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INTRODUCTION

Early sex identification is a constant challenge in
sea turtles given the invasiveness of actual proce-
dures and their importance in sex ratio estimation,
which is considered an indispensable tool to evalu-
ate and manage animal populations, especially in
wildlife programs. Slight temperature fluctuations
can significantly affect the sex ratio of populations
of certain species, including sea turtles (Warner &
Shine 2011, Patiño-Martínez et al. 2012). Therefore,

this parameter is important for monitoring the
dynamics of captive and free-ranging populations
(Raynaud & Pieau 1985, Jan zen & Paukstis 1991).
Sea turtles display temperature-dependent sex
determination (TSD; Yntema & Mro sovsky 1982,
Standora & Spotila 1985, Crews et al. 1994): their
sexual phenotype is determined during the ther-
mosensitive period of egg incubation (Miller & Lim-
pus 1981, 2003, Pieau et al. 1994). Temperature fluc-
tuations affecting the sex ratio can arise due to
natural (e.g. beach thermal zones, meteorological
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conditions) and anthropo genic changes, such as
global warming, but also by the artificial manipula-
tion of incubation temperatures in controlled ex situ
breeding programs. The pivotal temperature is
defined as that at which offspring sex ratio comes
close to 1:1. Incubation near the pivotal temperature
is the most widely accepted explanation for intersex
turtles which, in morphological terms, are neither
male nor female (Limpus et al. 2009). Studies of
gonadal intersexuality in chelonians have described
the presence of ovotestes (Ewert et al. 1994,
Mrosovsky & Godfrey 1995, Wibbels & Crews 1995).
In addition to obvious or prominent immature semi-
niferous tubules, these individuals have a thick or
thin cortex with female characteristics (Whitmore &
Dutton 1985). Apart from in ovo or neonate individ-
uals, at least 1 adult sea turtle has been reported
with apparently healthy, independent male and
female gonads, and has also been classified as inter-
sex (Limpus et al. 2009).

Three sea turtle species inhabit the Mediterranean
Sea: the green sea turtle Chelonia mydas, the leath-
erback sea turtle Dermochelys coriacea, and the log-
gerhead sea turtle Caretta caretta, with loggerheads
being the most abundant (Broderick et al. 2002). For
loggerheads, the Valencian community in the west-
ern Mediterranean is an important mixed foraging
ground of juveniles which come from nesting areas
in the western and eastern Atlantic and the eastern
Mediterranean (Laurent et al. 1993, Casale et al.
2002, Monzón-Argüello et al. 2010, Carreras et al.
2011). The rehabilitation area of the Oceanografic of
the Ciudad de las Artes y las Ciencias (CAC) per-
forms health status monitoring and rehabilitation
programs with sea turtles and cetaceans stranded
alive or by-caught in the Valencian region.

Reliable sex ratio estimates require accurate sex
identification of individual animals. The sex of adult
sea turtles is usually identified based on the sexual
dimorphism of external features. The main second-
ary sexual characteristics are claw size, total tail
length, and the distance between the caudal part of
the plastron and the cloacal opening. In addition, as
male turtles reach adult size, they tend to secrete
more testosterone, which induces tail lengthening
and penis development (Lutz et al. 2003). Adult
females typically differ from males in that they have
a shorter tail and their cloacal opening is located
roughly halfway between the tip of the tail and the
plastron’s anal scute (Wyneken 2001). Technological
improvements in endoscopy have enabled the identi-
fication of the sex of neonate and juvenile sea turtles
by directly examining the gonads.

Intersex turtles have been observed in several
places around the world. Limpus et al. (2009)
reported an intersex green turtle Chelonia mydas on
Raine Island (Australia) that was male externally, but
female internally based upon laparoscopic examina-
tion. Some findings of mainly intersex hatchling sea
turtles (Dutton et al. 1985, Mrosovsky & Godfrey
1995) focused on histological examinations of
gonads. However, no report of pseudohermaphro-
ditism in sea turtles, based on external morphological
features, endoscopic examination, gonadal biopsy,
and hormonal testing, has been published.

Pollutants have been associated with a disruption
of the endocrine function and possibly sex reversal in
sea turtles and are therefore recognized as threats
(Hamann et al. 2010). Environmental exposure to
 so-called ‘endocrine-disrupting chemicals’ (EDCs),
which include industrial chemicals, pesticides, fungi-
cides, plasticizers, and even phytoestrogens, can
interfere with normal sexual development, especially
when exposure occurs during certain critical periods.
The US Environmental Protection Agency (EPA)
defines endocrine disruptors as ‘chemicals that either
mimic or block the effects of hormones at the target
receptor/tissue or by directly stimulating or inhibit-
ing production of hormones by the endocrine system’
(EPA 2007, p. 56342–56343). These compounds share
the ability to derail natural hormonal systems and
processes, although they may act by different mech-
anisms (Venerosi et al. 2012).

This report presents 2 cases of pseudohermaphro-
ditism in loggerhead sea turtles based on external
sexual characteristics and internal laparoscopic ex -
am ination. We hypothesize that in addition to tem-
perature fluctuation, there could be other causes,
such as exposure to endocrine disruptors, which are
able not only to disturb hormonal composition, but
also to change turtle sexual characteristics. 

MATERIALS AND METHODS

Animals

From 2006 to late 2012, 162 stranded sea turtles
were admitted to the ARCA del Mar rescue area of
the CAC (20 to 30 individuals annually) for rehabili-
tation and later release. In order to detect signs of ill-
ness, these individuals were externally examined
and subjected to radiographic and ultrasound exam-
inations. Since May 2011, laparoscopy, and gonadal
biopsy sampling when necessary, have also been
routinely performed to confirm gender and to detect
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internal pathologies (Limpus et al. 1994, Wyneken et
al. 2007). Since that time, these 2 techniques have
been used to identify the sex of 16 juvenile logger-
head sea turtles, including the 2 described in this
report.

The maturity of turtles in the rescue area is esti-
mated using several measurements (Wyneken 2001):
straight-line carapace length (SCL), curved carapace
length (CCL), straight-line carapace width (SCW),
and curved carapace width (CCW).

Sexing method

As per standard procedure in this rescue area, the
2 animals analyzed in this report were fasted for 48 h
prior to surgery. General anesthesia was carried out
using a single intravenous injection of propofol (8 mg
kg−1; Propofol-Lipuro® 10 mg kg−1, B. Braun Vet-
Care) as an inducing agent. Maintenance was
accomplished by isoflurane (Isoba®vet Schering-
Plough Animal Health) and oxygen (1−1.5% at 0.9 l
min−1). Pain relief was administered using a single
intramuscular injection of butorphanol tartrate
(0.4 mg kg−1; Fort Dodge Veterinaria) and meloxicam
(0.2 mg kg−1; Metacam® 5 mg ml−1, Boehringer
Ingelheim Vetmedica). The local anesthetic lidocaine
(Lidocaína 2% Epinefrina Normon, Laboratorios
Normon) was injected intradermally into the surgical
access site in both prefemoral areas. Turtles received
post-surgical antibiotic treatment with enrofloxacin
(5 mg kg−1 every 48 h; Baytril® 5%, Bayer). The sur-
gery site was prepared using povidone iodine (Beta-
dine® Meda Pharma) and alcohol (Ethanol 96% cos-
metic, Guinama).

To improve coelomic cavity visualization, insuffla-
tion through an access in the prefemoral fossa was
carried out by an electronic CO2 insufflator (Endofla-
tor®, Karl Storz Veterinary Endoscopy Europe) and a
pneumoperitoneum needle (Karl Storz). A 4.5 mm
trocar (Karl Storz) was introduced into the incision,
which was previously made in the contralateral fossa.
Endoscopy was performed using a rigid endoscope
with a 2.7 mm diameter and a 30° angle; the endo-
scope was either housed directly inside the trocar or
it was pulled out from the trocar and passed through
the incision inside a cystoscopy sheath (Karl Storz).
Instruments were cleaned and sterilized between
procedures using a glutaraldehyde-based solution
(Korsolex® plus, Bode Chemie) and were rinsed with
sterile distilled water. Both gonads were identified by
anatomical position, morphology, texture, and col-
oration (Hernandez-Divers et al. 2002, Kuchling

2006, Wyneken et al. 2007), and biopsies were taken
for histological examination (Miller & Limpus 2003).

Finally, the incision was closed using absorbable
sutures (Monosyn® 2/0 Glyconate monofilament,
Braun Aesculap VetCare). After surgery, the animals
were kept warm in a dry environment for 24 h to
ensure that the incision had closed and that the ani-
mals had recovered from anesthesia. This state was
achieved 30 min after surgery when both animals
presented palpebral and cloacal reflexes, regular
breathing, and movement when touched.

Histology

The 2 gonads in both turtles were biopsied 3 times
in different regions (cranial, medial, and caudal) to
ensure that no testicular tissue remained within the
ovaries. Biopsied tissue (1−2 mm in diameter) was
preserved in 10% buffered formalin for fixation to
prepare the histology sectioning. Paraffin sections
were stained with hematoxylin and eosin (H&E) for
light microscopy purposes.

Hormonal induction assay

In order to evaluate gonadal response to the pres-
ence of ovarian or testicular tissue, turtles were bled
before and after the intramuscular injection of re -
combinant avian follicle-stimulating hormone (FSH
Rara1, Rara Avis Biotec) (Innis 1997). Animals were
sampled at 48, 72, 96, and 144 h after the FSH injec-
tion. All samples were collected in lithium he parin
tubes, and plasma was separated and frozen at −30°C
until analyzed.

DNA extraction, amplification, and sequencing

The DNeasy Blood and Tissue Kit (Qiagen) was
used for DNA extraction from the tissue samples of
the 2 specimens preserved in ethanol (96%). A frag-
ment of mitochondrial DNA, encompassing tRNA-
Thr, tRNAPro, and the control region genes, was
amplified by polymerase chain reaction (PCR) using
primers LCM15382 (5’-GCT TAA CCC TAA AGC
ATT GG-3’) and H950 (5’-GTC TCG GAT TTA GGG
GTT TG-3’) (Abreu-Grobois et al. 2006). PCRs were
conducted in 25 µl volume reactions containing 1 µl
of both the forward and reverse primers (10 µM),
2.5 µl of dNTP (2 mM), 4 µl of magnesium chloride
(25 mM), 0.25 µl of Qiagen DNA polymerase, 5 µl of
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‘Q-solution’ (5×), and 2.5 µl of Qiagen buffer (10×)
(Qiagen Taq PCR Core Kit). Amplification was per-
formed with an initial denaturation for 5 min at 94°C,
followed by 40 cycles of 1 min at 94°C, 1 min at 55°C
(annealing temperature), and 1 min at 72°C with a
final extension of 7 min at 72°C. The PCR products
were sent to Biomedal Ltd. (Seville, Spain) to be puri-
fied and to then undergo 2-direction sequencing.
The 815 bp sequences were edited using the Chro-
mas computer software version 2.0, and were manu-
ally aligned by the ESEE software version 3.2s (based
on Cabot & Beckenbach 1989) by excluding primer
regions. These sequences included a 380 bp frag-
ment that was likely used to define the haplotypes as
they are reported in the Archie Carr Center for Sea
Turtle Research.

RESULTS

One sea turtle was admitted to the ARCA del Mar
rescue area in 2009 and the other in 2010, both with
partially developed external secondary sexual male
characteristics. Standard measurements showed that
both turtles were juveniles (Wyneken 2001): Animal
1, total body weight 7.2 kg, SCL 34.5 cm, CCL 28 cm,
SCW 28 cm, and CCW 33 cm; Animal 2, total body
weight 3.62 kg, SCL 27 cm, CCL 30 cm, SCW
22.8 cm, and CCW 28 cm.

Despite the fact that both animals were small and
still had sharp keels along the row of vertebral
scutes, their tails and claws were larger than those of
turtles of similar dimensions. The tail of Animal 1

protruded 15 cm from the supracaudal scutes of the
carapace, and the front claws were slightly curved
and 3 times larger (1.9 cm long) than those of turtles
with a similar body size (Fig. 1). From Animal 2,
which was smaller than Animal 1, 3 cm of tail pro-
truded from the supracaudal scutes, and the front
claws were twice the size (1.1 cm) of those of turtles
with a similar body size. Average claw length in sim-
ilar sized turtles accepted into the rehabilitation area
was between 0.6 and 0.8 cm (authors’ pers. obs).

During CO2 insufflation of the coelomic cavity prior
to coelioscopy, both animals everted the penis out
through the cloacal opening, allowing us to note that
it was proportionally larger than expected based on
the tail size and total animal size. Both penises had
the typical anatomical characteristics observed in
adult males, including an obvious seminal furrow
along the dorsal surface (Fig. 2).

Laparoscopic examination showed that the gona -
dal tissue clearly corresponded to typical ovarian
 tissue: the pale pink ‘v-shaped’ tissue was scalloped
at the edges and featured numerous small previtel-
logenic follicles (Miller & Limpus 2003, Wyneken et
al. 2007). A large, mobile paramesonephric duct
close to each gonad was clearly visible in both indi-
viduals. As these macroscopic findings indicated
female gonads (ovarian tissue) and no testicular tis-
sue were detected, both animals were catalogued as
females (Fig. 3).

The female sex for both animals was confirmed
histologically by observing a differentiation of the
gonadal medulla and the presence of previtel-
logenic follicles within the stroma. All tissue sam-
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Fig. 1. Caretta caretta. External morphological characteristics of Animal 1. (A) An elongated tail is clearly visible in a caudal
view of the animal. (B) The front claws on the front flipper were slightly curved and larger than those of turtles of a similar 

body size
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ples biopsied from different areas of both gonads in
each animal were ovarian, with no signs of testicular
tissue (Fig. 4). Consistently with these morphologi-
cal findings, both animals showed an increase in
estrogen levels without variation in testosterone

during the stimulation assay, which is
the expected response for females
(Table 1).

Taken together, our results indicate
that Animals 1 and 2 were juvenile log-
gerhead sea turtles that were develop-
ing male sexual secondary features,
which were premature based on body
size and other external characteristics.
In fact, both animals exteriorized an
anatomically normal penis during sur-
gery by means of sex identification.
Despite these male characteristics, la-
paroscopic examination, histology, and

a hormonal induction assay confirmed both animals to
be females, with no evidence of any male gonadal
structures.

The sequences obtained for Animals 1 and 2 were
blasted in the GenBank resources at NCBI-BLAST,
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Fig. 2. Caretta caretta. Penile eversion after CO2 insufflation of the coelomic cavity. (A) Animal 1. Global view of penile 
eversion (arrow) after insufflation. (B) Animal 2. Close-up view of penile eversion

Fig. 3. Caretta caretta. Endoscopic view of Animal 1. (A) Gonad (ovarian
 tissue). (B) Enlarged view of the same area as in (A), revealing numerous 

small previtellogenic follicles

Fig. 4. Caretta caretta. Histological images from biopsied gonads of (A) Animal 1 and (B) Animal 2, showing previtellogenic 
follicles
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resulting in a 100% fit with haplotypes CcA2.1 and
CcA3.1, respectively. These sequences were de -
posited in GenBank under accession numbers
KC748470 (Animal 1) and KC748471 (Animal 2).

DISCUSSION

Our results suggest that both animals are pseu do -
hermaphrodites. All available sex identification tech-
niques were applied to confirm the gender of the ani-
mals and to exclude the presence of gona dal tissues
of both sexes, which would indicate true hermaphro-
ditism. Laparoscopy was used in combination with a
biopsy of the samples taken homogeneously from
gonadal tissue. These ap proaches are the ‘gold stan-
dard’ for gender identification in this species.

These 2 cases of pseudohermaphroditism differ
significantly from previous reports of intersex turtles.
Those reports described gonads in the form of
ovotestes which featured seminiferous tubules in the
medulla and previtellogenic follicles in the cortex,
and these intersex gonads were stable over time
(Limpus et al. 2009). Conversely, however, our 2
cases had only 1 type of immature gonadal tissue
(ovary), although they prematurely expressed exter-
nal masculine characteristics.

The animals in the present study are interesting
cases not only because they are female turtles
expressing male external characteristics, but also
because the male characteristics are precocious.
Studies of loggerhead turtles in the Mediterranean
region have shown that the average male develops a
longer tail when CCL is at least 70 cm and achieves
sexual maturity when CCL is 75 to 80 cm (Casale et
al. 2005). In the present study, CCL was 28 cm for
Animal 1 and 30 cm for Animal 2.

Hormonal assays examining basal levels of testos-
terone and estrogen are often used to predict turtle
gender (Innis 1997). In some studies, males tested by
such assays have shown significantly higher plasma
testosterone levels than females (Innis 1997). In addi-
tion, these assays seem less reliable when used with
young individuals. Given the immaturity of both ani-
mals in our study, we opted to perform a hormonal
induction assay to detect the presence of the testicu-
lar tissue not observed during laparoscopy or multi-
ple biopsies. In this test, levels of testosterone and
estrogen are measured following an intramuscular
injection of recombinant avian FSH. This assay has
been successfully applied in young terrapins and tor-
toises (Pavgi & Licht 1990, Innis 1997). In both of our
animals, the level of estrogen increased  after the
injection, but the level of testosterone did not, sug-
gesting not only the presence of ovarian tissue, but
also the absence of testicular tissue or of functional
male gonadal tissue.

True hermaphroditism usually occurs in associa-
tion with incubation anomalies, particularly in spe-
cies displaying TSD as opposed to species in which
sex is genetically determined. However, true her -
maph roditism should not be manifested as an early
expression of secondary sexual characteristics. In
some vertebrates, including certain mammals, pseu do -
 hermaphroditism can also occur as a result of kary-
otype defects (Mastromonaco et al. 2012). Since sea
turtle sex is not genetically determined, chromoso-
mal errors are unlikely to explain the pseudoher-
maphroditism of our animals. Reproductive abnor-
malities often occur in association with exposure to
toxic compounds with androgenic effects, otherwise
known as EDCs (Webb et al. 2003). EDCs in the envi-
ronment have been linked to compounds that mimic
the effects of estrogens. Reproductive disturbance in
aquatic wild males has been reported following
exposure to EDCs received from sewage treatment
plant (STP) effluents or in rivers contaminated with
estrogenic compounds. For years, fish have been
considered highly vulnerable to EDCs and have been
the subject of interest of many European research
programs (Pickering & Sumpter 2003, Carballo et al.
2005). Other coastal regime species may also be vul-
nerable to the effect of sea outfalls from STPs, even
though contaminated discharges are generally much
more diluted in salt waters than in rivers and lakes
(Matthiessen 2003). We hypothesize that the most
likely cause for these abnormalities is environmental
exposure to endocrine disruptors, which presumably
led to the defective development of phenotypic sex-
ual characteristics. This explanation seems even
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Time (h) Hormone level
after FSH Turtle 1 Turtle 2
injection Estradiol Testosterone Estradiol Testosterone

0 <10 <0.08 <10 0.2
48 18 0.08 41 0.32
72 70 <0.08 48 0.31
96 <10 <0.08 <10 0.28
144 <10 <0.08 <12 0.36

Table 1. Caretta caretta. Hormonal induction assay: hormonal
measurements in the plasma of both sea turtles at the base-
line time (0) and at 48, 72, 96, and 144 h after a single injec-
tion of intramuscular follicle-stimulating hormone (FSH).
A rise in the estradiol plasma concentration (pg ml−1) is
clearly visible in both animals as compared with testos-
terone (ng ml−1), which remains at almost the same level 

after stimulation



Crespo et al.: Pseudohermaphroditism in loggerhead sea turtles

more likely given the fact that the 2 female turtles
expressed masculine characteristics despite being
sexually immature.

STP effluents contain natural hormones, such as 17
β-estradiol (E2) and estrone (E1), which are excreted
by women, and estrogenic pharmaceuticals such as
ethynylestradiol (EE2), which is widely used for birth
control and estrogen replacement therapy (Svenson
et al. 2003). In addition, industrial estrogenic chemi-
cals such as phthalates, bisphenol A (BPA), and by-
products of alkyl phenol ethoxylate surfactants, have
been extensively detected in wastewater (Pickering &
Sumpter 2003). In Spain, some studies have focused
on Catalonia (NE Spain) and have reported the inter-
sex condition in the past (Petrovic et al. 2002). Many
persistent environmental pollutants have been re-
ported to cause these effects in aquatic animals. For
instance, exposure to many polyaromatic compounds
(PCBs, PAHs) or to compounds such as tributyltin has
been associated with masculinization in genetically
female Japanese flounder Paralichthys olivaceus
(Shimasaki et al. 2003). Some areas in the vicinity of
industrial and urban locations and in the mouths of
the main Mediterranean rivers have been identified
as  areas of concern due to exposure to persistent or-
ganic pollutants (POPs; Gómez-Guttiérez et al. 2007).
The presence of androgens and androgen precursors
in river water and sediment has been associated with
the masculinized phenotype of the female mosquito
fish Gambusia holbrooki (Jenkins et al. 2003). POPs
in the environment and in eggs also exert endocrine
effects on American alligators Alligator mississippi-
ensis (Milnes 2005) and diamondback terrapins Ma -
laclemys terrapin (Basile 2010), and lead to changes
in embryonic development.

POPs are abundant across the planet as a result of
human activities (Wiig 1998), including several areas
of the Mediterranean Sea, where there are many
populations of sea turtles (EEA 2005). Sea turtles in
Valencian waters derive from both Atlantic and
Mediterranean populations, as is the case of the 2
animals in the present study. Numerous studies have
documented POPs and metals in sea turtle popula-
tions worldwide, mainly based on egg yolk sampling
(van de Merwe et al. 2009, Alava et al. 2011,
Komoroske et al. 2011, Stewart et al. 2011).

The genetic analysis indicates that both turtles may
have hatched in eastern Mediterranean nesting
areas (see Garofalo et al. 2009, Piovano et al. 2011,
Yilmaz et al. 2012), although one of them may have
come from the Atlantic. The mitochondrial haplotype
of one of the turtles (CcA3.1) is very common in Turk-
ish rookeries, but is less common in other nesting

areas of the Mediterranean and the Atlantic. The
most probable origin of this turtle is Turkey. The
other turtle presented a mitochondrial haplotype
(CcA2.1), which is widely distributed in the Mediter-
ranean and the Atlantic, so it might have hatched
anywhere in these areas. In both cases, the turtles
might have grown in the western Mediterranean for
some years before being transported to the rehabili-
tation center. Small juveniles from Atlantic rookeries
can enter the western Mediterranean as young indi-
viduals with very small body sizes, and they can
remain in these waters for many years until their
body size allows them to return to the Atlantic (Rev-
elles et al. 2007). Small juveniles from Mediterranean
rookeries can also arrive in the western Mediterran-
ean following southern European currents along Ital-
ian, French, and Spanish coasts. After this journey,
they may remain in eastern Spanish feeding grounds
for many years (Carreras et al. 2006) until they return
to their nesting beaches for breeding.

CONCLUSION

In this first report of pseudohermaphroditism in
Caretta caretta, 2 individuals with premature mas -
culine sexual secondary characteristics were demon-
strated to be females. Various lines of evidence
 suggest endocrine disruptors to be the most likely
explanation for these unusual developmental de -
fects. Further research is needed to determine how
POPs act as endocrine disruptors in sea turtles. These
studies should determine the origin, age, and habi-
tats of affected individuals with a view to considering
both the exposure and to quantitate POP levels in the
tissues involved in this effect. This work may lead to
further studies about the real impact of these contam-
inants on the environment in general, and on sea tur-
tles in particular.

Our results also suggest the need to reevaluate the
suitability of external phenotypical characteristics as
the basis for gender identification in sea turtles.
Adding laparoscopy to the routine procedures ap -
plied in the clinic may help to reveal new cases of
pseudohermaphroditism, which will prompt the re -
assessment of the frequency of this and other sexual
disorders in sea turtles. In addition, more research is
needed to promote non-invasive techniques of sexing
young sea turtles. In this way, improving and devel-
oping hormonal assays may prove an important tool
for assessing wildlife populations, even when animal
size is a real challenge. Furthermore, these tech-
niques can be applied to field and remote conditions.
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Finding out more about the presence of new pseu -
dohermaphroditism cases can help to assess the rele-
vance of these individuals in the population. Firstly,
we cannot besure whether they are feasible repro-
ductive animals, despite their hormonal response
and gonadal histology apparently being normal. Sec-
ondly, this physical impediment assumed present in
long-tailed sea turtle females, may complicate, or in
the worst cases may prevent, the mating process.
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