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INTRODUCTION

Emerging diseases in marine ecosystems have
increased over the past few decades (Harvell et al.
1999, 2004, Maynard et al. 2011). Climate change
and anthropogenic pressure (e.g. habitat degradation,
pollution) appear to contribute to marine wildlife dis-
ease outbreaks either by depressing host resistance
or facilitating pathogen transmission (Harvell et al.
2004). Examples include recent outbreaks of infec-
tious coral diseases worldwide (Maynard et al. 2011),
the Caribbean-wide mass mortality of the long-
spined sea urchin (Chiappone et al. 2002), mass mor-
talities of seals due to morbillivirus infection (Jensen
et al. 2002), and several infectious neoplastic dis-

eases associated with novel viral pathogens in mar-
ine mammals (Bossart 2007).

Fibropapillomatosis (FP) is an infectious neoplastic
disease of marine turtles. It was first described in
1938 in a green turtle captured in Florida (Smith &
Coates 1938), but since the 1980s, disease outbreaks
in the wild have been increasingly reported (Jacob-
son et al. 1989, Williams et al. 1994, Work et al. 2004,
Foley et al. 2005). The tumours can be both external
and internal and, though benign, depending on site
and size they can hamper vital activities such as
feeding, vision and swimming, and impede organ
function (Herbst 1994, Herbst & Klein 1995). Neritic
juveniles and subadults are the most susceptible life
stages, whereas in adults the disease is rare (Herbst
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& Klein 1995, Work et al. 2004, Foley et al. 2005). Al -
though more frequent among green turtles (Hirama
& Ehrhart 2007), FP has been reported in all species
of hardshelled sea turtles (Herbst 1994, D’Amato &
Moraes-Neto 2000, Guillen & Villalobos 2000). A
novel alphaherpesvirus, the chelonid herpesvirus-5
(ChHV5), has been consistently detected by PCR
analysis in tumour tissue samples from sea turtles
(Quackenbush et al. 1998, Herbst et al. 2004, Ene et
al. 2005, Patrício et al. 2012), and acknowledged as
the most likely aetiological agent of FP (Herbst et al.
2004). However, recently, ChHV5 has been detected
in several individuals not expressing visible tumours
(Page-Karjian et al. 2012, Alfaro-Núñez et al. 2014).

Anthropogenically altered environments are asso-
ciated with high FP prevalence (Herbst 1994, Aguirre
& Lutz 2004, Van Houtan et al. 2010), implying that
factors in these environments promote disease out-
break, e.g. facilitating virus transmissibility, and/or
enhancing disease expression (Keller et al. 2014). A
strong spatial heterogeneity observed in the distribu-
tion of ChHV5 variants in Florida, USA, along with
sympatric species of marine turtles sharing virus
variants suggests local infection after recruitment to
coastal habitats (Ene et al. 2005). Transmission routes
remain unclear, but may involve the direct contact
between super spreaders and naïve individuals
(Work et al. 2015).

The study of stranded turtles has provided insight
into the spatiotemporal trends of FP prevalence in
eastern USA and in Hawaii (Work et al. 2004, Foley
et al. 2005, Chaloupka et al. 2008b); however, this
could give biased estimates of FP trends if turtles
with FP have mainly stranded as a consequence of
advanced disease, leading to an overrepresentation
of severely afflicted animals and potentially missing
mild FP states. Alternatively, analyses of capture-
mark-recapture (CMR) records can generate reliable
estimations of disease incidence (LaPorte et al. 1992).
CMR data have been widely applied to assess key
population dynamic parameters of sea turtle popula-
tions, i.e. survival, abundance and somatic growth
(Bjorndal et al. 2000, Chaloupka & Balazs 2005, Patrí-
cio et al. 2011, 2014), but rarely used to evaluate
 disease dynamics (but see Chaloupka et al. 2009).
Overall, long-term data on chronic wildlife disease
prevalence among live individuals are still scarce
(Harvell et al. 2002, Lloyd-Smith et al. 2005,
Chaloupka et al. 2009).

At Puerto Rico, reports of FP from occasional
stranded turtles date back to 1985 (Williams et al.
1994, Ortiz Rivera et al. 2002). Since 1997, 2 foraging
grounds for immature green turtles, Tortuga Bay and

Puerto Manglar, have been monitored annually
through CMR. FP was first observed in 2000 and has
been present since. Here, we modelled the dynamics
of FP disease on these coastal turtle aggregations
through the analyses of 18 yr (1997−2014) of live CMR
records. We investigated the effects of body size, year
and abundance on FP risk, and estimated for the first
time the periods from recruitment to expressing FP,
and from FP expression to complete recovery.

MATERIALS AND METHODS

Study site and sampling

Puerto Manglar (18.30° N, 65.25° W) and Tortuga
Bay (18.32° N, 65.23° W) are foraging grounds for
immature green turtles, located on the islands of
Culebra and Culebrita, respectively, which lie east of
the main island of Puerto Rico (see Fig. 1 in Patrício et
al. 2011). Puerto Manglar is a mangrove-lined bay,
bordered by Rhizophora mangle (red mangrove),
surrounded by wetlands and minor residential devel-
opment. Maximum depth is 5 m, and the water has
high turbidity (Diez et al. 2010). Tortuga Bay is
located at the uninhabited island of Culebrita, man-
aged by the US Fish and Wildlife Service as part of
the Culebra National Refuge. A sandy beach sur-
rounds the bay, underwater vegetation is sparser
than at Puerto Manglar, water transparency is greater,
and depth goes to 12 m (Diez et al. 2010). Turtles
were captured with an entanglement net 200 m long
and 5 m deep (nylon twine, 25 cm stretch mesh),
deployed for ~1 h in areas <5 m deep using a 7 m
long motor boat. Swimmers snorkelled continually
along the net to extract entangled turtles. Turtles
were tagged in the front flippers with 2 external tags
(inconel and/or plastic tag) plus 1 internal passive
integrated transponder (PIT) tag. Multiple tagging
(i.e. flipper tags plus PIT tag) plus photo identifica-
tion (facial profile photographs; Reisser et al. 2008) of
each captured turtle assured that we were able to
correctly identify all unique individuals throughout
our CMR program. Straight carapace length (SCL,
from the nuchal notch to the posterior tip) was meas-
ured to the nearest 0.1 cm. All individuals were
examined for the presence of cutaneous or conjuncti-
val FP (Brooks et al. 1994) and were assigned a
tumour score (1−3; Work & Balazs 1999). Turtles were
kept covered with wet towels, and handling time was
minimized to 15 min per individual, after which they
were released near their capture location. Overall
sampling effort ranged from 5 to 16 net sets yr−1, with
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5.9 ± 3.5 net sets yr−1 (mean ± SD) in Tortuga Bay and
6.6 ± 3.6 net sets yr−1 in Puerto Manglar.

Data set

From 1997 to 2014 (except 1999), we recorded 764
capture events, 443 at Puerto Manglar, correspon-
ding to 218 unique individuals, and 321 at Tortuga
Bay, comprising 143 individual turtles (Table S1 in
the Supplement at www. int-res. com/ articles/ suppl/
m547p247 _ supp. pdf). Mean yearly individual cap-
tures at both sites corresponded to a proportion of
0.39 ± 0.15 (mean ± SD) of the estimated annual abun-
dance (range: 0.13−0.68; see Patrício et al. 2014 for
abundance estimates).

Linear mixed effects modelling

Body condition indices (BCIs) have been used to
describe the well-being of several wild species (Ste -
venson & Woods 2006). We calculated the BCI for
each capture as follows: BCI = weight/SCL3 (Bjorndal
et al. 2000). A tumour score (TS; Work & Balazs 1999)
was assigned to each capture of an FP turtle. We ana-
lysed the relationship between BCI and having FP
using the data set of all captures (n = 764), with linear
mixed effects analysis using lme4 (Bates et al. 2015)
implemented in R v.3.1.2 (R Development Core Team
2008). FP presence was included in the model as a
fixed effect and turtle identity as a random effect.
Similarly, within the group of cap-
tures corresponding only to turtles
with FP, we assessed the relation-
ship between TS (fixed effect) and
BCI, also using turtle identity as a
random effect. p-values for fixed
effects were ob tained by likelihood
ratio tests of the models with the
effect against models without it.
Re sidual plots were visually in -
spected to detect de viations from
homosce dasticity or normality.

Non-linear modelling

We applied generalized additive
mixed modelling (GAM), available
from package mgcv (Wood 2015)
and applied in R v.3.1.2 (R Devel-
opment Core Team 2008), to assess

the relationship between FP presence and 3 potential
explanatory covariates: SCL, sampling year, and
annual abundance. GAMs are a semi-parametric
form of generalized linear models that use smooth
functions to fit the data, thus allowing for nonlinear
relationships between the response and explanatory
variables (Hastie & Tibshirani 1995), and perform
well with binary responses (Wood 2015). A range of
different models was tested, including different com-
binations of the potential predictors, until only signif-
icant covariates were kept. GAMs had a binomial
error distribution and logit link. Model selection was
based on Akaike’s information criterion (Sugiura
1978) and smoothing selection performed with re -
stricted maximum likelihood estimation (Corbeil &
Searle 1976). Annual aggregation abundance esti-
mations were extended to 2014 using the same meth-
ods as used previously (Patrício et al. 2014).

RESULTS

Prevalence

FP was first observed in Puerto Manglar in 2000,
with FP prevalence peaking in 2003, when 75% of
individuals captured presented tumours. Disease
pre valence slowly decreased until 2007, and has
since remained low (Fig. 1). At Tortuga Bay, FP was
not observed until 2005, and prevalence peaked in
2009 at 33%. FP has persisted since, albeit with a low
prevalence (Fig. 1). At Puerto Manglar, 21% of the
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Fig. 1. Percentage of captures of healthy green turtles (light grey) and those with
fibropapillomatosis (FP; dark grey), at 2 juvenile turtle foraging grounds, Tortuga
Bay (N = 321) and Puerto Manglar (N = 443), Puerto Rico, throughout 18 yr of 

capture-mark-recaptures
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turtles (45/218) were observed with FP during the
sampling period; 31% of these were later ob served in
a fully recovered state. At Tortuga Bay, only 9 turtles
were captured with FP (6%), and none were ob -
served to have recovered.

BCI

There was no effect of FP on BCI (F1,763 = 0.80,
p = 0.37; Fig. S1a in the Supplement) and the effect of
individual (i.e. turtle identity) accounted for negligi-
ble amounts of variance (see model summary in
Table 1). For the 85 captures of turtles with external
fibropapillomas (corresponding to 54 unique individ-

uals; 59% with TS1, 36% with TS2, and 5% with
TS3), the effect of individual on BCI was also negligi-
ble (Table 1), and there was no effect of TS on BCI
(F2,82 = 0.81, p = 0.45; Fig. S1b).

FP risk

For Puerto Manglar, the minimal adequate GAM
showed that both SCL (GAM edf = 2.75, ref.df = 3.48,
χ2 = 26.01, p < 0.001, where edf is estimated degrees
of freedom and ref.df the estimated residual degrees
of freedom) and sampling year (GAM edf = 5.17,
ref.df = 6.20, χ2 = 71.25, p < 0.001) were significant
explanatory variables for FP risk, and the model con-

taining these 2 covariates was a good
fit, with R2 = 0.42 (deviance explained =
40.4%). The size-specific function was
nonmonotonic, with the probability of
having FP increasing first with SCL,
plateauing around 57 to 59 cm SCL,
then decreasing with in creasing cara-
pace length (Fig. 2a). The year-specific
function was also non monotonic, with
FP rapidly increasing to a peak in 2003,
from then on decreasing and appar-
ently stabilizing (Fig. 2b). For Tortuga
Bay, the best minimal GAM also re -
tained SCL (GAM edf = 1.00, ref.df =
1.00, X2 = 7.02, p < 0.01), and sampling
year (GAM edf = 2.18, ref.df = 2.74, X2 =
11.43, p < 0.01). The model, however,
had a lower fit (R2 = 0.18, deviance
explained = 28.3%), probably due to a
very small sample size of turtles with
FP. According to the GAM, the proba-
bility of having FP in Tortuga Bay
increased linearly with SCL (Fig. 2c). It
also increased with year until 2009,
plateauing thereafter (Fig. 2d). There
was no significant effect of abundance
on the presence of FP, at either site
(Puerto Manglar: GAM edf = 1.00, ref.df
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Fig. 2. Graphical summary of generalized additive models fitted to an 18 yr
green turtle mark-recapture dataset. Response variable: probability of fibro -
papillomatosis (FP) among immature green turtles from (a,b) Puerto Manglar
and (c,d) Tortuga Bay foraging grounds, Culebra, Puerto Rico. Predictor vari-
ables: (a,c) straight carapace length and (b,d) year. p-values are displayed for 

significant effect of covariates in FP incidence

Dataset                   Model                                        Mixed effects                                       Fixed effects
                                                              Covariate              Variance            SD               Covariate      Estimate              SE               t

All captures    BCI~FP+(1|ID)     Turtle ID (intercept)    6.69 × 10−11    8.18 × 10−6          Intercept    1.32 × 10−4    6.09 × 10−7    216.61
(n = 764)                                        Residual              1.01 × 10−10    1.01 × 10−5          FP          −2.67 × 10−7    1.44 × 10−6     −0.18
FP captures     BCI~TS+(1|ID)     Turtle ID (intercept)    3.87 × 10−11    6.22 × 10−6          Intercept    1.37 × 10−4    3.91 × 10−6     34.91
(n = 85)                                          Residual              1.35 × 10−10    1.16 × 10−5          TS         −2.25 × 10−6    2.48 × 10−6     −0.91

Table 1. Summary of linear mixed effects models fitted to captures of immature green turtles from Puerto Rican foraging grounds. 
BCI = body condition index, FP = fibropapillomatosis, ID = turtle ID, TS = tumour score
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= 1.00, χ2 = 1.19, p = 0.276; Tortuga Bay:  GAM edf =
1.00, ref.df = 1.00, χ2 = 0.28, p = 0.595). See Table 2
for a GAM summary.

DISCUSSION

This study extends our knowledge on the dynamics
of FP in green turtles by monitoring individuals
through all stages of disease expression, i.e. prior to
disease, diseased, and recovered, using long-term
live CMR records. We observed the outbreak of an
FP epidemic at Puerto Manglar in 2000, peaking in
2003, with 75% of the turtles exhibiting tumours.
There was no evidence of disease-specific detectabil-
ity at our study sites (Patrício et al. 2011), indicating
no sampling bias or behavioural differences for FP
turtles, so these are unbiased prevalence estimates
(Jennelle et al. 2007). Located ca. 5 km away, Tortuga
Bay appeared free of FP until 2005, thereafter FP
prevalence remained low. This variability in FP pre -
valence between the 2 bays is consistent with the
previously recognized individual turtle fidelity to for-
aging site (Hirama & Ehrhart 2007, Patrício et al.
2011). This attribute of behaviour could be an impor-
tant factor limiting the spread of FP among foraging
grounds, if highly infectious individuals responsible
for disease transmission (super-spreaders; Work et al.
2015) stay resident.

High FP prevalence has been associated with an -
thropogenic change and habitat degradation (Williams
et al. 1994, Van Houtan et al. 2010, Keller et al. 2014),
and existing ChHV5 variants were shown to pre-date
FP outbreaks (Herbst et al. 2004, Patrício et al. 2012),
further implicating the environment as a factor in dis-
ease expression. Stress has also been posited as a
risk factor (Lu et al. 2003). Puerto Manglar, where
higher FP prevalence was observed, is potentially
more anthropogenically altered than Tortuga Bay,
which is located at an uninhabited island. An assess-
ment of water quality in 2007 using DNA-markers

identified widespread human faecal contamination
at Puerto Manglar, while at Tortuga Bay such con-
tamination was only detected next to a boat (Diez et
al. 2010). Additionally, nitrogen isotopic values (δ15N)
of macroalgae at Manglar suggested an intermediate
level of wastewater impact (Diez et al. 2010). Ecolog-
ical differences could also be a factor. Macroalgae
and Thalassia testudinum dominate at Puerto Manglar,
in contrast to the seagrasses Syringodium filiforme
and Halodule wrightii at Tortuga Bay (Diez et al.
2010). Foraging aggregations of green turtles are,
however, typically small (such as the ones in the
present study) and demographic stochasticity alone
(i.e. the probabilities of immigration, emigration, death,
disease transmission and recovery) could affect FP
prevalence (Lloyd-Smith et al. 2005).

Turtles did not appear to be diseased upon arrival at
our study sites, supporting the hypothesis of local in-
fection (Ene et al. 2005). Our model indicates that FP
prevalence is low among smaller and larger individu-
als at Puerto Manglar, whereas medium-sized turtles
are the most likely to show signs of the disease. Size
distributions of healthy, FP and recovered individuals
at this site indicate that FP appears at intermediate
sizes and that only large turtles were seen recovered
(Fig. 3). We believe that the size effect on FP expres-
sion observed in the GAM, and previously reported
(Work et al. 2004, Foley et al. 2005, Patrício et al.
2014), is in reality the reflection of (1) residency plus
tumour development, and (2) tumour regression. We
estimate that it takes 1.8 ± 0.8 yr (mean ± SD, range:
1.0−3.4 yr; Fig. 4a) from recruitment to FP expression
at Puerto Manglar, based on the records of 12 turtles,
which were first captured healthy and later with fi-
bropapillomas. These individuals were never missed
for more than 1 yr in our CMRs and were first
captured when FP was already present at the foraging
ground (i.e. from 2000 onwards).

As FP prevalence at Puerto Manglar was greater
earlier in our sampling period, sufficient time has
elapsed to be able to observe recovery from the dis-
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Dataset/site                                     Model                Covariate             edf             ref.df              χ2                      p                  R2

Puerto Manglar (n = 443)        FP~SCL+Year               SCL                 2.75             3.48            26.01            2.30 × 10−5        0.42
                                                                                        Year                5.17             6.20            71.25           4.02 × 10−13           

Tortuga Bay (n = 321)              FP~SCL+Year               SCL                 1.00             1.00             7.02              8.1 × 10−3         0.18
                                                                                        Year                2.18             2.74            11.43             8.0 × 10−3

Table 2. Summary of generalized additive mixed models (GAM) fitted to captures of immature green turtles from 2 Puerto Ri-
can foraging grounds, Puerto Manglar and Tortuga Bay, to model the relationship between fibropapillomatosis expression (FP,
response variable) and straight carapace length (SCL) and sampling year (predictor variables or covariates). edf: estimated 

degrees of freedom of smooth term, ref.df: estimated residual degrees of freedom of smooth term (1 = linear)



Mar Ecol Prog Ser 547: 247–255, 2016

ease; a total of 31% of afflicted turtles were con-
firmed to have become tumour-free. This is likely a
conservative estimate, nevertheless, as a previous
analysis on the survival probability (φ) of turtles in
the study aggregations found a much lower apparent
survival among subadults (SCL ≥ 65 cm, φ = 0.529)
compared to juveniles (SCL < 65 cm, φ = 0.832), most
likely attributed to the permanent emigration of the
larger turtles (Patrício et al. 2011). The mean SCL of
turtles at first capture after disease recovery was
67.5 cm, well within the subadult category. Thus, FP
regression is in reality probably even higher, as
larger turtles are both recovering from FP and per-
manently leaving the foraging ground (Patrício et al.
2011, 2014). If turtles are likely to recover from FP
and acquire immunity in the process, it could explain
the rarity of the disease among adult turtles.

The time from FP expression to complete recovery
was 2.7 ± 0.7 yr (mean ± SD, range: 1.5−4.0 yr, Fig. 4b),
estimated for 12 individuals (of 14 confirmed to have
recovered) never missed in the CMR analysis for a
period longer than 1 yr. Evidence of high disease
recovery at Puerto Manglar suggests that one factor

involved in disease fadeout could be herd immunity,
as more turtles became resistant to FP, and the num-
ber of susceptible individuals de creased (Lloyd-
Smith et al. 2005). The annual size structure of green
turtles at Manglar appears to support this hypothesis,
as there seems to have been very little recruitment
between the peak years of the FP epidemic and its
fadeout (Fig. 5, size class < 40 cm SCL), keeping the
stock of vulnerable individuals low. If this is the case,
the replenishment of susceptibles, by recruitment of
new individuals to the forage aggregation could
potentiate a new epidemic (Lloyd-Smith et al. 2005).
Here, we observed from 2008 onwards an increase in
the smaller size class (Fig. 5), indicative of recruit-
ment, and indeed we detected a slight increase in FP
prevalence in the last 2 sampling years at Puerto
Manglar, attributed en tirely to new individuals (i.e.
first tagged in 2013). This could suggest that cyclic
epidemics may occur at this site, depending on the
immigration rate of individuals naïve to FP.

Previous studies have shown that FP did not affect
survival rates or somatic growth at Puerto Manglar

252

Fig. 3. Distribution of straight carapace lengths (SCLs) at
first capture of green turtles: (a) healthy, (b) with fibropapil-
lomatosis (FP), and (c) after recovery from FP at Puerto
Manglar, Puerto Rico, throughout 18 yr of capture-mark-
 recaptures. Numbers on the x-axis represent the start of each 

5 cm SCL class

Fig. 4. Straight carapace length at the first capture of resi-
dent green turtles at Puerto Manglar, Puerto Rico, that (a)
were healthy and subsequently developed fibropapillo-
matosis (FP; n = 12), and (b) had FP and later recovered from
the disease (n = 12). The x-axes show the time (in yr) for
each transition. Circled numbers identify unique individu-
als, and grey circles highlight turtles for which both transi-
tions were recorded (n = 5). Dashed vertical line: mean time 

for each transition (light grey bars: SD)
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and Tortuga Bay foraging grounds (Patrício et al.
2011, 2014). In Florida, FP was also shown to have no
significant effect on somatic growth (Kubis et al.
2009), and in Hawaii, growth rates were only lower in
severe cases of the disease (Chaloupka & Balazs
2005). Most FP turtles at our study sites were mildly
to moderately affected, and we found no significant
differences in mean BCI between healthy and
afflicted turtles or among tumour scores, comparable
to what was reported in Hawaii (Work et al. 2004).
Similar to our evidence for a high rate of disease
recovery, photo-identification of green turtles around
the Hawaiian archipelago in a foraging ground in
Maui revealed a regression rate of 32% (Bennett et
al. 1999); in a different Hawaiian population, at
Molokai, 13 to 18% annual recovery probabilities
were estimated (Chaloupka et al. 2009). Tumour
regression was further observed in Florida (22/24,
88%; Hirama & Ehrhart 2007), Brazil (2/8, 25%;
Machado Guimarães et al. 2013), Australia (propor-
tion undetermined; Limpus et al. 2005) and in olive
ridley turtles from Costa Rica (20/42, 48%; Aguirre et
al. 1999). Despite the FP epidemic at Puerto Manglar,
a positive trend in aggregation size since the begin-
ning of the CMR program was detected, with a mean
annual increase of 10.9% (Patrício et al. 2014). Most
remarkably, the once severely depleted Hawaiian
green turtle population has recovered despite major
FP outbreaks during the 1980s and 1990s (Chaloupka
et al. 2009). Analogously, high FP prevalence in
Florida has not halted population recovery (Chaloupka
et al. 2008a). These optimistic findings suggest that

FP is not currently a major threat to  marine turtle
populations.

CONCLUSIONS AND MONITORING
 RECOMMENDATIONS

Anthropogenic activities, predicted to increase dis-
ease occurrence, are on the rise (Harvell et al. 2002,
2004). Human-mediated climate change may also
increase disease prevalence in the marine environ-
ment (Harvell et al. 2002) or lead to deviations in
host− pathogen relations and disease virulence. Ad -
ditionally, selective harvesting of healthy individuals
can increase FP prevalence in a population (Stringell
et al. 2015). To better understand the dynamics of
wildlife disease and attempt to predict outbreaks, it is
essential to gather baseline data and to develop rapid
response capability to identify, monitor and manage
disease outbreaks as they occur (Harvell et al. 2004).
FP disease monitoring can be easily integrated in
already established population surveys; however, it
is important to standardize the collected information.
We suggest including the following data regarding
disease presentation: number, size and location of
tumours, weight of afflicted turtles, BCI, and pres-
ence of parasites. We also recommend more long-
term monitoring, for reliable estimates of disease
prevalence. The collection of biopsy samples from
both affected and healthy tissues for molecular
research is also desirable, as new molecular tech-
niques are becoming available and may be key to
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Fig. 5. Percentage of captures of imma-
ture green turtles foraging at Puerto
Manglar, Puerto Rico, corresponding to 4
straight carapace length (SCL) size classes
(cm), throughout 18 yr of capture-mark-
recaptures. The white size class (SCL < 

40 cm) is indicative of recruitment
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understand the evolution of ChHV5 and FP disease
spread. A unified monitoring strategy could be
achieved with little additional effort and would sig-
nificantly improve our understanding of the implica-
tions of FP to marine turtle populations worldwide.
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