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ABSTRACT: Biologging data have provided important insights into the biology of marine mam-
mals, sea turtles, birds, fish, and some invertebrates. These techniques have primarily targeted
adult organisms. As a result, the early life histories of many marine species are still poorly under-
stood. Technological advances have enabled attachment of smaller tags to young animals,
although equipment limitations, access to and capture/handling of animals, and equipment and
data recovery pose additional challenges to researchers. In this Theme Section, we highlight novel
uses of biologging data on juvenile animals, including reviews of tagging efforts on multiple life-
history stages and the integration of oceanographic data in tagging efforts.

KEY WORDS: Electronic tags - Tag attachment techniques - GPS tags - Juveniles - Ocean currents -
Ontogeny - Hatchling dispersal models - Satellite telemetry - Conservation

Broad-scale anthropogenic impacts, such as cli-
mate change, affect all life stages of a species (Bran-
der 2010, Costa et al. 2010, Evans et al. 2010, Fuentes
et al. 2011). Advances in understanding the physiol-
ogy, behavior, and ecology of many marine species
have been made through the use of biologging tech-
niques (Mate et al. 2007, Wilson et al. 2008, Ropert-
Coudert et al. 2009, Block et al. 2011), which involve
attaching electronic tags to animals (Hooker et al.
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2007, Rutz & Hays 2009). These techniques have pri-
marily targeted adult organisms, which tend to have
higher survival rates than younger life stages. In
addition, larger tags can hold more sensors, greater
data storage, and larger batteries, resulting in longer
deployments (McConnell et al. 2010). Biologging
data have provided important insights into the bio-
logy of marine mammals, sea turtles, birds, fish, and
some invertebrates (Godley et al. 2008, Hays et al.
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2008, Rutz & Hays 2009, Bograd et al. 2010). How-
ever, there are few tagging studies on young life
stages, and the early life histories of many marine
species are still poorly understood (Hazen et al. 2012).

Improvements in biologging technology have re-
sulted in substantial tag miniaturization and en-
hanced data compression (Fedak et al. 2002).
Although it is now possible to attach small tags to
young animals (Mansfield et al. 2012), the small size
of these tags limits the number of sensors and length
of battery life. Thus, it is essential that careful
thought goes into what research questions need to be
answered and what types of, and how much, data
need to be collected to answer these questions
(Breed et al. 2011). Attachment mechanisms, dura-
tions, and data needs vary greatly across taxa. Young
life stages tend to grow rapidly, often requiring
attachment methods that are flexible enough to
accommodate growth. Assessment in the field or
laboratory of suitable attachment methods is neces-
sary to ensure that any tagging effort has minimal
impact on the animals and that the benefits of tag-
ging are not outweighed by the costs (Wilson &
McMahon 2006, Mansfield et al. 2012).

High mortality during early life history stages
makes it difficult to recover tags, may shorten the
period of data collection, and may compromise the
data set when predation occurs (Hays et al. 2007,
Baker 2008, Snoddy & Southwood Williard 2010).
Deploying a large number of tags may therefore be
necessary to ensure sufficient sample size, particu-
larly if population processes are of interest (Lindberg
& Walker 2007). Sample sizes in biologging are gen-
erally limited by available funds, so this may require
the use of simpler, more inexpensive tags, and care-
ful selection of the type of sensors they contain.

The Editors of this Theme Section convened a
workshop entitled ‘Tagging through the Stages:
Technical and Ecological Challenges in Observing
Life Histories through Biologging' on 16 March 2011
in association with the Biologging IV Symposium in
Hobart, Tasmania, Australia, with these technical
and ecological challenges in mind. Over 40 scientists
and tag manufacturers from Australia, North Amer-
ica, Europe, and Japan attended the workshop. The
objectives were to (1) establish the current state of
knowledge and technologies for studying young life
stages, (2) stimulate interdisciplinary discussion
regarding ontogeny and biologging, (3) review and
discuss tag design and attachment techniques, and
(4) integrate a life history perspective within the field
of biologging. There were 18 presentations organ-
ized in 3 categories: (1) Tag Techniques and Devel-

opment, (2) Applications, and (3) Models. The studies
within this Theme Section represent a selection from
the workshop and feature recent advances in our
understanding of the life history of marine species
and in particular young life stages.

Tag techniques and development

Advances in tagging technology, such as tag
miniaturization, increased data storage and transmis-
sion capabilities, and improved analytical method-
ologies, are providing researchers with important
tools for understanding the biology of marine species
and their environment (Fedak et al. 2002). The devel-
opment of fast-acquisition GPS tags, such as Fastloc
GPS, has provided increasingly accurate location
estimates for species that spend little time at the sur-
face. Shimada et al. (2012) propose a new filtering
method for these data that will reduce the linear error
of Fastloc GPS locations to 47 m while retaining more
than 94 % of the data. This increases the accuracy of
home range estimates.

Ethical issues of whether the benefits of the scien-
tific research outweigh the costs of disturbance and
possible harm to the animals are a key concern when
catching and tagging juvenile animals (Godley et al.
2008). In some cases, young animals may be too small
or delicate to carry tags and less invasive research
techniques are more appropriate. Assessment of the
best techniques and practices will help to ensure that
any impacts to the animals are kept to a minimum.
Mansfield et al. (2012) describe the first satellite
tracks of any neonate sea turtle and the first in situ
data of the movements of neonate loggerheads
Caretta caretta. They tested several methods for
attaching small solar-powered satellite tags, first in
the laboratory to determine whether there were any
apparent effects on growth or body condition, and
then in the field to establish retention durations and
to assess the performance of antifoulants (Mansfield
etal. 2012). There is increasing evidence that general
guidelines and practices may not well reflect species-
specific and longer-term harmful tag effects (Sherrill-
Mix & James 2008, Vandenabeele et al. 2012).

Assessing effects of drag may also be possible
using computer simulations, to determine how an
animal's physiology or morphology may assist with
creating hydrodynamic tag designs and attachment
techniques (Pavlov & Rashed 2012). Abnormal swim-
ming behavior and increased energetic demands can
occur if the tag causes high drag (Hammerschlag
et al. 2011, Jones et al. 2011). Designing tags and
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attachments that will reduce drag is therefore of key
importance for marine species that rely on swimming
to capture prey or escape predators, and during flight
for seabirds (Phillips et al. 2003, Wilson & McMahon
2006, Heithaus et al. 2007, Vandenabeele et al. 2012).

Accommodating the rapid rate of growth in young
life stages remains a challenge for tag attachment
techniques. Implantable tags may be necessary for
studying animals over longer time periods and across
life history stages (Horning & Hill 2005). Implantable
tags have been effectively used in fish (Block et al.
2005). For example, data on depth and temperature
have been used to study changes during different
stages of the breeding migration in bluefin tuna
Thunnus thynnus (Teo et al. 2007).

Applications

Biologging has contributed significant insights that
inform conservation management and population
recovery efforts by identifying important habitats,
risks and impacts, and helping to plan effective miti-
gation measures (Mate et al. 2007, Shillinger et al.
2008, McClellan et al. 2009). This has included the
ability to identify life history changes and potential
harvest events. Hart et al. (2012) describe the habitat
use of juvenile hawksbill turtles Eretmochelys imbri-
cata that had core-use areas within a national park.
Two of the tagged turtles migrated from the exclu-
sive economic zone of the USA into Cuban waters,
where they may have been harvested.

Neonate, juvenile, and subadult animals tend to
behave and move differently than do adults, which
may be a result of reduced diving and swimming
capabilities early in life, and/or may reduce compe-
tition for resources (Campagna et al. 2007). Protec-
tion by the mother can make it difficult to tag some
young animals, and their unpredictable movements
can limit tag recovery and thus bias estimates of
survival (Bradshaw et al. 2000). Tyson et al. (2012)
attached high-resolution digital acoustic recording
tags (Dtags) to a mother and calf humpback whale
Megaptera novaeangliae pair in Wilhelmina Bay
(Western Antarctic Peninsula) to examine their con-
current diving and foraging behavior. The pair
appeared to dive in synchrony for much of the tag
duration while maintaining close proximity (Tyson
et al. 2012). These results validate findings that
humpback whale calves accompany their mothers
following parturition, remaining within several body
lengths until they separate permanently (Szabo &
Duffus 2008).

Although the number of biologging studies on
immature animals has been small relative to studies on
adults (Hazen et al. 2012), an increasing number of
recent studies, such as those on loggerhead turtles
(Mansfield et al. 2009, 2012, Seney et al. 2010), green
turtles Chelonia mydas (Hart & Fujisaki 2010), and
flatback turtles Natator depressus (Salmon et al. 2009),
have coupled advances in tag miniaturization with
innovative deployment techniques to obtain critical
information about the dispersal and movements of
juvenile animals. Data regarding this early life history
phase are essential because it represents a large pro-
portion of the life span for many long-lived species.
Moreover, experiences during these periods are often
diverse as these animals undergo transition between
nursery, foraging, and breeding habitats, which can
exert a strong influence upon the population status.

Barbour & Adams (2012) used passive integrated
transponders and found that common snook Cen-
tropomus undecimalis had high site fidelity within
specific life history stages, but changed habitat as
they transitioned from juvenile to adult. In another
example, Melnychuk et al. (2012) utilized acoustic
tagging methods to examine the hypothesis that
exposure of coho Oncorhynchus kisutch and sockeye
salmon O. nerka to solar UV-B radiation during
freshwater rearing of fry and parr increases mortality
at the time of smoltification and ocean entry. They
found that while exposure to UV-B resulted in
stunted growth of juvenile coho salmon, survivorship
during the early marine period was unaffected by the
UV-B treatment for both populations. These results
challenge one of the many hypotheses for declines in
marine survival rates of salmon populations.

Models

There are cases, such as for very young animals,
where biologging may not currently be the most
appropriate technique or the study design could be
improved by first gaining some basic knowledge
about when and where the animals are going and
how they are dispersing. Ocean models provide a
valuable resource for investigating potential disper-
sal patterns and have been of particular use in study-
ing sea turtles (Hays & Marsh 1997, Hamann et al.
2011, Scott et al. 2011). Very little is known about the
movements of hatchling turtles after they leave the
beach, until they return as adults decades later. As
adults, sea turtles show fidelity to their natal nesting
areas and then at the end of the breeding season may
migrate to distant foraging sites. Hays et al. (2010)
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hypothesized a hatchling drift scenario whereby the
foraging sites used by individual sea turtles reflect
their previous experiences as young juveniles, when
they were carried by ocean currents. The pattern of
adult dispersion from the breeding area for logger-
head turtles in the Mediterranean reflects the extent
of passive drift experienced by hatchlings (Hays et al.
2010). Simulations of leatherback hatchling dispersal
in the western Pacific by Gaspar et al. (2012) simi-
larly found that adults targeted favorable foraging
areas inside the juveniles' drift area. However, there
were drift areas where no adults have been observed
(Gaspar et al. 2012). This could occur as a result
of high juvenile mortality along drift trajectories
towards such areas, or because of a low return rate if
the return route to the natal area is difficult to tra-
verse or navigate. Shillinger et al. (2012) investigated
leatherback turtle hatchling dispersal in the eastern
Pacific Ocean using passive tracer experiments
within a Regional Ocean Modeling System. Tracer
distribution suggested that hatchling leatherbacks
entering the ocean in late winter are rapidly and effi-
ciently transported offshore within eddies, which
may provide a productive refuge for them.

These simulations of hatchling dispersal based on
ocean models can further be refined through labora-
tory and field-derived estimates of their swimming
behavior (Wyneken et al. 2008, Okuyama et al. 2009,
Salmon et al. 2009). Ocean currents may be critical
for determining the dispersal of hatchlings and sub-
sequent migrations as adults. Fossette et al. (2012)
reviewed various techniques for estimating current
velocities, or more directly, passive drift trajectories.
All methods have errors that need to be taken into
account when inferring about animal behavior, and
in particular, swimming activity (e.g. Jonsen et al.
2005).

Conclusions

There are several challenges in biologging-related
conservation research efforts, including: (1) equip-
ment limitations (i.e. suitable tag attachment meth-
ods, device size, finding funding for sufficient sample
sizes), (2) access to and capture/handling of animals,
(3) equipment and data recovery, and (4) creating the
empirical link between science and policy that
encourages support by managers. The first 3 of these
challenges are magnified for immature life stages,
which impose stronger size, weight, and recovery
constraints on tags. Some lessons can be learned
from terrestrial efforts, such as those involving but-

terflies that carried extremely small, lightweight
radar transponders to track their flight paths (Cant et
al. 2005). Research involving birds who require
small, lightweight tags can also provide insights into
marine juvenile biologging techniques (Thorup et al.
2007, Egevang et al. 2010). Our knowledge of life his-
tories can greatly benefit from combining biologging
data with information from other sources, such as
genetics, stable isotope analyses, modeling, and
stranding and catch data (Wallace et al. 2006, Dutton
et al. 2007, Godley et al. 2010, Taylor et al. 2011).
Similarly, burgeoning efforts to develop high seas
marine protected areas, define ecologically or biolog-
ically significant areas, and establish adaptively-
managed marine reserve networks, will draw upon
new tracking research that examines animal move-
ments and behaviors across life history stages
(Shillinger et al. 2008, 2010, Game et al. 2009, Dunn
2011).
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