Contemporary assessment of forestomach contents from Hawaiian green sea turtles (*Chelonia mydas*) in Kane'ohe Bay, Oahu

Shandell Brunson
MSc Zoology, University of Hawai'i at Mānoa

Hawaiian Turtles

Green turtle Chelonia mydas Honu Herbivorous Diet: Algae and Seagrass

Hawksbill turtle
Eretmochelys imbricata
Honu 'ea or 'ea
Omnivorous
Diet: Sponges, algae,
jellyfish, crustaceans

NOAA Technical Memoran dum NMFS

This TM series is used for documentation and timely communication of preliminary results, interim reports, or special purpose information. The TMs have not received complete formal review, efficial control, or detailed editing.

JUNE 2000

IDENTIFICATION MANUAL FOR DIETARY VEGETATION OF THE HAWAIIAN GREEN TURTLE Chelonia mydas

¹ Dennis J. Russell and ² George H. Balazs

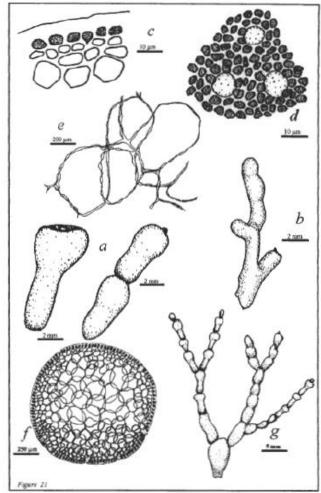
¹Department of Science American University of Sharjah P.O. Box 26666 Sharjah, United Arab Emirates

National Oceanic and Atmospheric Administration National Marine Fisheries Service Southwest Fisheries Science Center Honolulu Laboratory 2570 Dole Street Honolulu, Hawaii 96822-2396

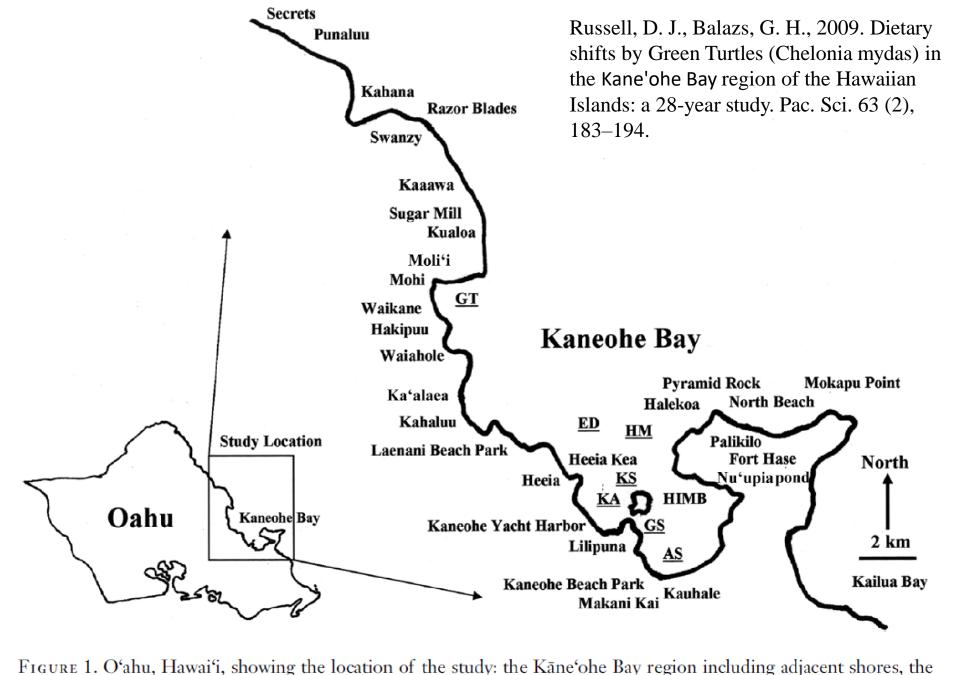
NOAA-TM-NMFS-SWFSC-294

Rhodophyta (red algae)

Gracilaria salicornia (C. Ag.) Dawson


Distinguishing characteristics: G. salicornia is a yellow to red alga, 2-3 mm diameter, translucent, cylindrical, and constricted at regular intervals. Tips are inflated at the uppermost end with a dent on the top, sometimes containing a small terminal section.

G. salicornia occurs in green turtle samples as fragments that for certain identification include typical pear-shaped sections. In cross-section there are large (100 µm) colorless medullary cells with thick cell walls (2-6 µm) that typically blend into a tangled mass. Cells are smaller toward the contex, and large gland cells are just beneath the surface.


Ecology: G. salicornia was introduced from an unknown source location to Hilo and then to Waikiki in 1972 and to Kaneohe Bay in 1978. It grows well in the shallow, calmer parts of reef flats.

Related species:

Gracilaria coronopifolia and Gracilaria parvispora look similar but do not have a constricted thallus, fragile branches, or prostrate growth habit.

Key to figure 21: a. branch tip form, with small apex and indented tip b. branch tip variation c. detail of cells near the cortex d surface view with larger, clear gland cells a medullary cells f. cross-section of the thallus g. branching pattern

locations where stranded turtles were found, and the initial locations where nonnative algae were introduced. AS, A. spicifera; HM, H. musciformis; GS, G. salicornia; ED, E. denticulatum; GT, G. tikvahiae; KA, K. alvarezii; KS, K. striatum.

TABLE 1

Algae and Sea-Grass Species Listed in Order of Number of Times They Were Found in Turtle Samples, Their Frequency (% Smp) in 372 Samples, and Average Percentage Amounts or Quantity (Avg %) in the Samples

Species	No. of Times Found	% Sample	Avg %a (SD)
*Acanthophora spicifera	237	64.0%	44.1% (32.8)
*Hypnea musciformis	154	41.4%	42.0% (32.7)
*Gracilaria salicornia	138	37.0%	40.9% (33.0)
Codium edule	95	25.5%	32.1% (30.5)
Laurencia nidifica	88	23.7%	12.5% (16.5)
Codium arabicum	78	21.0%	28.9% (30.5)
Amansia glomerata	70	18.8%	30.0% (34.1)
Dictyosphaeria cavernosa	62	17.0%	20.2% (27.6)
Halophila hawaiiana	59	15.9%	24.0% (14.3)
Pterocladiella capillacea	57	15.3%	35.5% (31.3)
Dictyota acuteloba	50	13.4%	8.5% (8.5)
Lyngbya majuscula	49	13.2%	4.0% (3.5)
Spyridia filamentosa	49	13.2%	15.7% (25.7)
Dictyosphaeria versluysii	36	9.7%	5.5% (5.8)
Sargassum echinocarpum	36	9.7%	10.9% (13.2)
Halimeda discoidea	29	7.8%	7.2% (9.6)
Sargassum sp.	29	7.8%	36.3% (32.0)
Gracilaria coronopifolia	25	6.7%	20.8% (28.9)
Sargassum polyphyllum	25	6.7%	12.6% (22.6)
Valonia aegagropila	21	5.7%	3% (2.8)
Halophila decipiens	15	4.0%	28.4% (28.8)
Ulva reticulata	15	4.0%	33.8% (40.0)

^{*} Indicates a non-native species

Russell, D. J., Balazs, G. H., 2009. Dietary shifts by Green Turtles (Chelonia mydas) in the Kaneohe Bay region of the Hawaiian Islands: a 28-year study. Pac. Sci. 63 (2), 183–194.

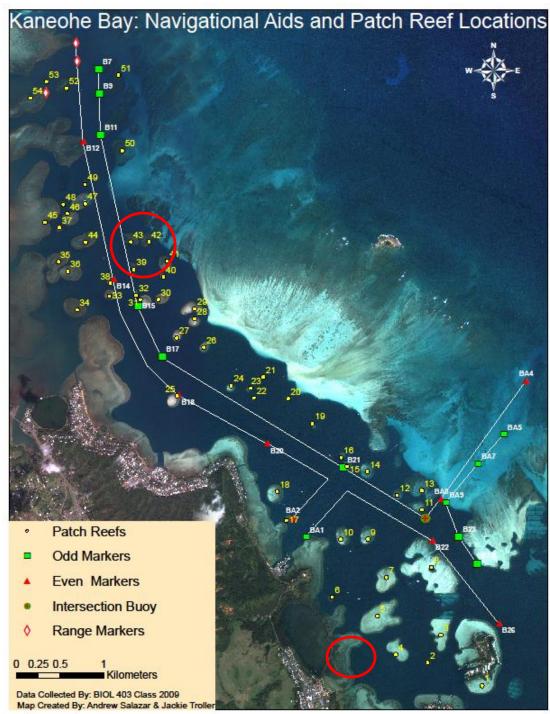
Table 1. The number of samples in which each algae species was found in 194 Green Turtle samples, percent of the number of samples represents only the number of samples that species was found out of the total 194 samples, average amounts (% cover with SD) is the amount of that species present as a % of cover and is an indication of possible biomass and the proportion is the combination of % of samples and the % amount. The remaining 33 species, not shown in the table, were found in only one sample, were less than 1% average amount and had <0.01 frequency out of a total of 72 species that were found in Turtle samples between (2005–2012). They were generally microscopic species and contributing an insignificant amount to the Turtle diet.

Species	No. of Samples	% No. Smp	Avg % Amt	Proportion
*Acanthopnhora spicifera	137	71.00%	33.7 ± 5.0	0.26
*Gracilaria salicornia	130	67	54.0 ± 9.4	0.38
Laurencia nidifica	41	7.2	7.5 ± 2.3	0.02
Codium arabicum	39	20.1	16.4 ± 3.6	0.03
Amansia glomerata	37	19.1	39.2 ± 7.1	0.08
*Hypnea musciformis	37	19	15.5 ± 5.9	0.03
Codium edule	34	17.5	23.2 ± 6.8	0.04
Pterocladiella capillacea	34	17.5	20.3 ± 3.5	0.04
Lyngbya majuscula	22	11.3	2.2 ± 1.0	< 0.01
Dictyosphaeria verslysii	16	8.3	18.6 ± 5.2	0.02
Halophila decipiens	14	7.2	40.2 ± 8.1	0.03
Spyridia filamentosa	14	7.2	0.6 ± 0.3	< 0.01
Halophila hawaiiana	13	6.7	47.0 ± 8.5	0.03
***Cladophora sp.	11	5.7	$0.1 \pm 0.1^{**}$	< 0.01
Microdictyon umbellicatum	11	5.7	0.6 ± 0.3	< 0.01
Turbinaria ornata	11	5.7	6.6 ± 4.0	< 0.01
Sphacelaria sp.	10	5.2	$< 0.1 \pm 0.1$	< 0.01

^{*} Indicates a non-native species

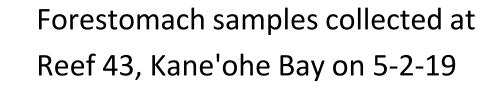
Russell, Dennis J., and George H. Balazs. "Increased use of non-native algae species in the diet of the green turtle (Chelonia mydas) in a primary pasture ecosystem in Hawaii." *Aquatic ecosystem health & management* 18.3 (2015): 342-346.

Figure 1. Green turtle, *Chelonia mydas*, feeding on *Gracilaria salicornia* in the back lagoon of Moku o Lo'e, Kāne'ohe Bay, O'ahu, Hawai'i in March 2017. Photo by KD Bahr.


Bahr, K.D., D.M. Coffey, K. Rodgers & G.H. Balazs. 2018. Observations of a rapid decline in invasive macroalgal cover linked to green turtle grazing in a Hawaiian marine reserve, *Micronesica* 2018-07, 11 pp. Published online 31 December, 2018. http://micronesica.org/volumes/2018

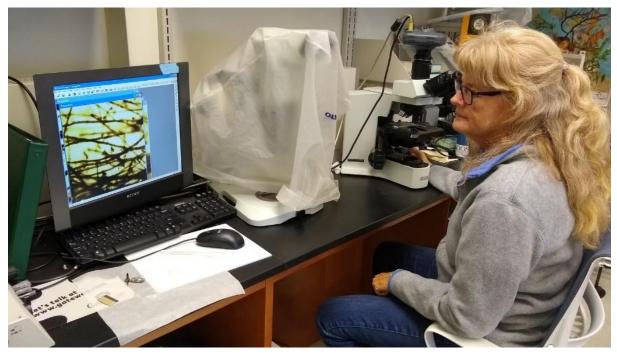
Capture and sampling of green turtles in March, May, and June 2019. Additional sample collected from reef north of Coconut Pier in January 2020.

Dr. Cindy Hunter



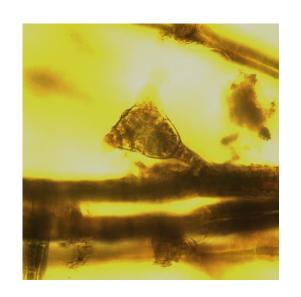
Esophageal lavage technique

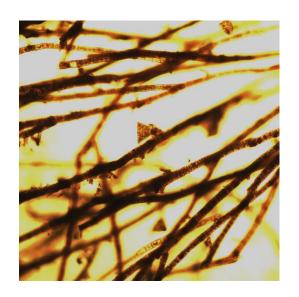
Forbes, G. A. "Diet sampling and diet component analysis." Research and management techniques for the conservation of sea turtles.


IUCN/SSC Marine Turtle Specialist Group Publication, Washington, DC (1999): 235.

Algae identification by Donna Brown in Dr. Celia Smith's lab

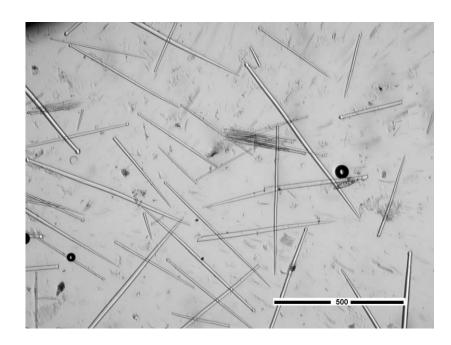
Gracilaria salicornia

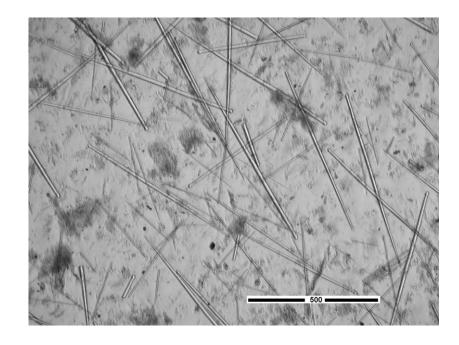



Acanthophora spicifera

Halimeda discoidea

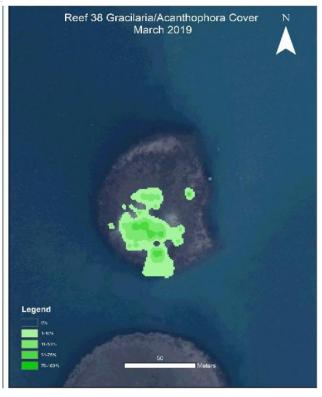
Sphacelaria novae-hollandiae (turf algae)


Analysis of 5 forestomach samples from green turtles in Kane'ohe Bay

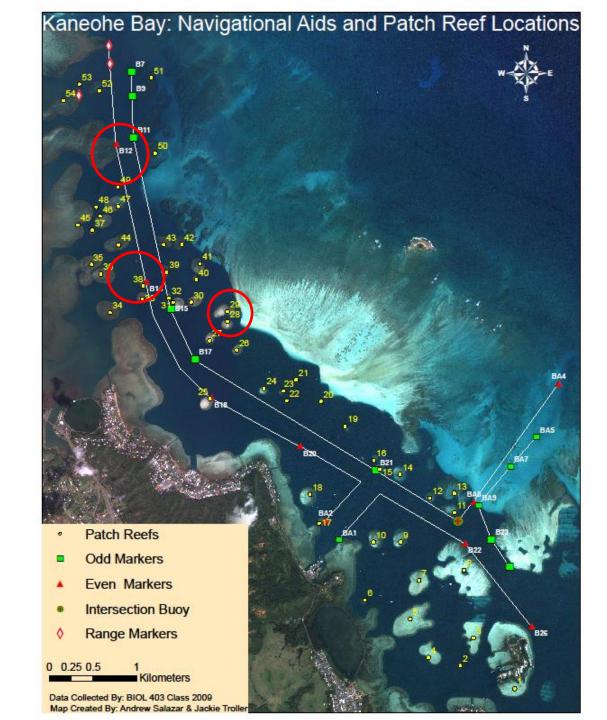

	OA42	OA43	OA77	OA78	OA106
Date	March 2019	March 2019	May 2019	May 2019	January 2020
SCL (cm)	78.4	79.4	91.3	89.7	64.5
Location	Reef 39	Reef 39	Reef 42	Reef 43	Coconut Pier,North
Previously tagged	No	No	Yes East 2012	Yes East 1992	No
Forestomach contents	G. salicornia 98.3%	G. salicornia 99.1%	A. spicifera 52.5%	<i>G. salicornia</i> 99.1%	G. salicornia 94.6%
	A. spicifera 1.7%	A. spicifera < 1%	G. salicornia 24.5%	A. spicifera < 1%	Sponge 5.4%
		Coral rubble	H. discoidea 22.4%	Coral rubble	
			S. novae- hollandiae < 1%		
			Shell fragments		

Sponge identified by Dr. Christopher Kelley and Rob van Soest as *Terpios zeteki*. Sponge was 7% of forestomach sample.

Survey data of *Gracilaria sp.* and *Acanthophora sp.* cover taken by Division of Aquatic Resources (DAR) in March 2019.


Marker 12

Reef 28


Reef 38

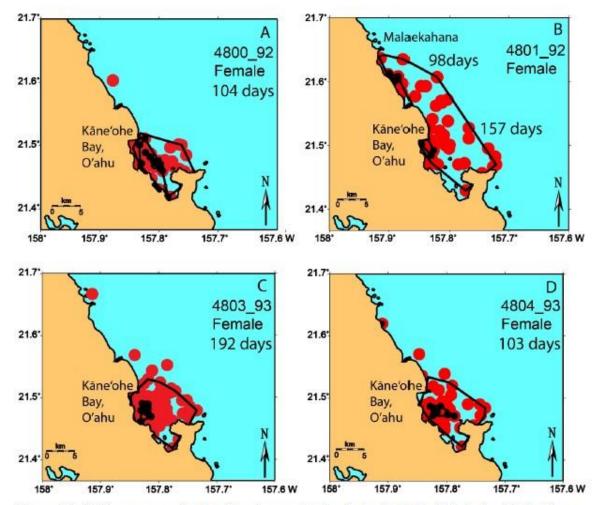


Figure 6A-D. Home ranges for four female green turtles that migrated to Kāne'ohe, O'ahu from French Frigate Shoals. Large colored circles indicate 1 km radius around each position. Black circles indicate positions with LC 1, 2 or 3 data. Black lines outline the Minimum Convex Polygons for Minimum Home Range and Full Home Range areas. Two Minimum Home Ranges are indicated for female 4801_92 in Figure 6B.

Not surprisingly, two of the largest bays in the Hawaiian Islands, Kāne'ohe (41 km2), O'ahu and Kahului (34 km2), Maui, were the destination for more than half (60%) of the 15 turtles migrating to home foraging habitats in the MHI, thereby emphasizing the conservation importance of these two residential areas for breeding adults in the Hawaiian green turtle population. Green turtles are known to occur in abundance at both locations, undoubtedly due to availability of desirable algal forage and benthic terrain providing ideal underwater refugia (Balazs et al. 1987, Brill et al. 1995, Russell & Balazs 2009)

Balazs, GEORGE H., DENISE M. Parker, and MARC R. Rice. "Ocean pathways and residential foraging locations for satellite tracked green turtles breeding at French Frigate Shoals in the Hawaiian Islands." *Micronesica* 4 (2017): 1-19.

Moving forward and future collaborations

- Continued diet content analysis of lavage and necropsy forestomach contents
- Calculation of wet mass to dry mass ratio of individual components of forestomach contents and percentage ash, which represents inorganic content of the algae
- Satellite tracking of two turtles in Kane'ohe Bay to look at fine scale movements within their foraging habitat

Mahalo!

University of Hawaii

- Dr. Cindy Hunter
- Donna Brown
- Dr. Celia Smith
- Dr. Christopher Kelley

MTBAP Team

- Dr. Summer Martin
- Dr. T. Todd Jones
- Dr. Camryn Allen
- Dr. Alexander Gaos
- Marylou Staman
- Jan Willem Staman
- Shawn Murakawa
- Alexandra Reininger
- Lindsey Bull
- Marina Praet

Collaborating Agencies

- University of Hawai'i
 Marine Option Program
- Hawai'i Institute of Marine Biology
- State of Hawai'iDAR DLNR DOCARE
- Dr. Thierry Work, USGS
- George Balazs,
 Golden Honu Services of Oceania
- Joint Institute for Marine and Atmospheric Research
- Hawai'i Preparatory Academy
- Maui Ocean Center Marine Institute
- Hawai'i Marine Animal Response
- Hanauma Bay

