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Green sea turtles, Chelonia mydas, have endangered and threatened 

populations globally, but several populations show signs of population recovery. In 

Hawaii, nesting female green turtles have increased 5.7% year
-1

 since 1973, but wide 

fluctuations in census counts of nesting females make recovery diagnosis difficult. 

For effective management planning, it is critical to have the best information possible 

on vital rates, and to determine the best tools and practices for incorporating vital rate 

information, particularly variability, into population models to assess population size 

and status. Process and observation errors, compounded by late maturity, obscure the 

relationship between trends on the nesting beach and the entire population. Using sea 

turtle nesting beach surveys as a population index for assessment is problematic, yet 

often pragmatic because this is the only population index that is easily accessible. It is 

advantageous to use a modelling approach that estimates interannual variability in life 

history traits, accounts for uncertainty from individual-level variability, and allows 

for population dynamics to emerge from individual behaviors. To this end, I analyzed 

a long-term data set of marked green sea turtles to determine the degree of temporal 



 

 

variability in key life history traits. From this analysis, I built an agent-based model 

(ABM) to form the basis of a new assessment tool – Monitoring Strategy Evaluation.  

In Chapter 2, I evaluated annual changes in demographic indicators (DIs) of 

3,677 nesting green turtles from a 38-year tagging program in the Hawaiian Islands to 

determine if key life history traits are changing over time and in response to nester 

density. I used linear mixed models and multistate open robust design models to 

estimate several DIs and correlated them with nesting female counts. Mean nester 

carapace length and breeding probability were highly variable over time, suggesting 

shifts in age structure that could be due to recruitment. The top-ranked model 

predicted constant female survival over time. A significant positive relationship 

between the nesting population and breeding probability was evident, and breeding 

probability shows promise as an indicator of population recovery. This work 

contributes to a growing set of studies evaluating sea turtle demography for temporal 

variability and is the first for Hawaiian green turtles.  

In Chapter 3, I develop the Green Sea Turtle Agent-Based Model (GSTABM) 

to evaluate how recovery processes differ across disturbance types. The GSTABM 

incorporates individually variable age-at-maturity, clutch frequency and clutch size, 

annually variable breeding probability, environmental stochasticity and density 

dependence in hatchling production. The GSTABM simulates the process of 

population impact and recovery and the monitoring process, with observation error, 

on the nesting beach. The GSTABM captures the emergent patterns of interannual 

nesting variation, nester recruitment, and realistic population growth rates. Changes 

in survival rates of the nearshore age-stage classes directly affected adult and nester 



 

 

abundance, population growth rate and nester recruitment more than any of the other 

input parameters. In simulating 100 years of recovery, experimentally disturbed 

populations began to increase but did not fully return to pre-disturbance levels in 

adult and nester abundance, population growth or nester recruitment. In simulations 

with different levels of monitoring effort, adult abundance was poorly estimated, was 

influenced by population trajectory and disturbance type, and showed marginal 

improvements in accuracy with increased detection probability. Estimating 

recruitment showed improvements with increasing detection levels. In the GSTABM, 

variability in the nesting beach does not mirror variability in adult abundance. The 

GSTABM is an important tool to determine relationships with monitoring, population 

assessment, and the underlying biological processes driving changes in the 

population, and especially, changes on the nesting beach. 

In Chapter 4, I develop a new simulation-based tool: Monitoring Strategy 

Evaluation (MoSE) to determine which data source yields the most useful 

information for population assessments. The MoSE has three main components: the 

simulated “true” operating, observation, and estimation models. To explore this first 

use of MoSE, I apply different treatments of disturbance, sampling, and detection to 

the virtual “true” population, and then sample the nests or nesters, with observation 

error, to test if the observation “data” accurately diagnose population status 

indicators. Based on the observed data, I estimated adult abundance, nester 

recruitment, and population trend and compare them to the known values. I tested the 

accuracy of the estimated abundance when annually varying inputs of breeding 

probability, detection and clutch frequency were used instead of constants. I also 



 

 

explored the improvement of trend accuracy with increased study duration. 

Disturbance type and severity can have important and persistent effects on the 

accuracy of population assessments drawn from monitoring rookeries. Accuracy in 

abundance estimates may be most improved by avoiding clutch frequency bias in 

sampling and including annually varying inputs in the estimation model. Accuracy of 

nester recruitment may be most improved by increasing detection level and avoiding 

age-bias in sampling. The accuracy of estimating population trend is most influenced 

by the underlying population trajectory, disturbance type and disturbance severity. At 

least 10 years of monitoring data are necessary to accurately estimate population 

trend, and longer if juvenile age classes were disturbed and trend estimates occur 

during the recovery phase. The MoSE is an important tool for sea turtle biologists and 

conservation managers and allows biologists to make informed decisions regarding 

the best monitoring strategies to employ for sea turtles.  

This modeling framework is designed to provide an evaluation of monitoring 

program effectiveness to assist in planning future programs for sea turtles. Altogether, 

my research suggests certain life history traits of green sea turtles have important 

temporal variation that should be accounted for in population models, understanding 

the relationships between nesting and the total population is essential, and basing 

population assessments from nesting beach data alone is likely to result in incorrect or 

biased estimates of status indicators. The quantitative tools employed here can be 

applied to other sea turtle populations and will improve monitoring, and result in 

better estimates of current population trends and enhance conservation for all species 

of sea turtles.  
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1 -  General Introduction 

 

Biodiversity is declining at an unprecedented rate (Pimm et al. 1995). Efforts to protect 

species from extinction, such as the US Endangered Species Act, are beginning to achieve 

species recoveries (Taylor et al. 2005, Lotze et al. 2011, Suckling et al. 2012, Magera et al. 2013, 

Roman et al. 2015). Examples of recovering populations complement the many examples of 

declining populations in studying resilience. Perturbed populations, in general, exhibit unusual 

behavior that can be attributed to transient dynamics (Mills 2013). Transient dynamics in 

structured populations occur because of impacts to specific demographic classes and time lags in 

the recovery as those classes “fill in” (Hastings 2004, Koons et al. 2005, Ezard et al. 2010, White 

et al. 2013, Gamelon et al. 2014). For example, even after a disturbance has been ameliorated, 

populations can continue to decline or can exhibit dampening oscillations (Crowder et al. 1994, 

Hastings 2004, Koons et al. 2005, Gamelon et al. 2014).  

Transient dynamics in populations have important implications for monitoring and 

management. First, in long-lived, migratory species, in which monitoring can only occur on 

particular demographic classes for short periods of time, population indices may give a false 

signal of abundance and population trend during unstable periods (Maxwell & Jennings 2005, 

Singh & Milner-Gulland 2011, Lynch et al. 2012). Second, if monitoring yields inaccurate data 

and the subsequent population assessments make false interpretations of trends, management 

errors can ensue. There are two main kinds of conservation errors: to conclude a population is 

threatened when in fact it is not and to conclude a population is not threatened when in fact it is; 

both kinds of error have biological, economic and societal consequences (Taylor & Gerrodette 

1993, Snover & Heppell 2009). While population recovery is welcome, unexpected 

complications in management can occur; for example, recovering species may be viewed as 
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“nuisances”, scapegoats, or competitors with humans for natural resources (Roman et al. 2015). 

This would be especially troubling if biologists conclude a population is recovered, and the 

public perceives recovery but considers it a nuisance and reacts negatively, when in fact the 

species is still endangered. Biologists and managers need to exercise caution when interpreting 

population indices from monitoring. In this dissertation, I develop an analytical approach and 

simulation-based tools to clarify relationships between observed and true population abundance 

and trends.  

Sea turtles are globally threatened taxa, and many populations of sea turtles are 

recovering, while some continue to decline despite intensive conservation measures (Chaloupka 

et al. 2008, Wallace et al. 2011, IUCN 2015). The life history of these species complicates 

monitoring and consequently conservation efforts. Sea turtles are long-lived, with late maturity, 

have long distance migrations, and are mostly pelagic. With late maturity comes temporal lags in 

recovery that depend on which age classes are disturbed and how conservation impacts survival 

of those age classes; this can have important implications for monitoring and assessment 

(Crowder et al. 1994, Heppell et al. 1996, Koons et al. 2005, White et al. 2013). Most sea turtle 

monitoring is conducted at nesting beaches, where nests are counted and/or individual female 

nesters are tagged and counted (Schroeder & Murphy 1999, Kendall & Nichols 2002). But, 

females are skip-nesters and do not breed annually, and adults are thought to be vastly 

outnumbered by juveniles (Heppell et al. 2003). Thus, just a fraction of the total population is 

monitored and monitoring provides a narrow view into the population. A great deal of inter-

annual fluctuation in the numbers of nesters and nests exists and makes it difficult to determine 

population trends (Chaloupka et al. 2008, Bjorndal et al. 2010, NOAA & USFWS 2015). It is 

uncertain how accurately rookery survey methods estimate abundance, recruitment and 
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population trend. In addition, considering that most sea turtles populations are in flux, either 

declining or recovering, transient dynamics may further obscure true population dynamics when 

monitoring only observes reproductive classes, i.e. nesters and nests (Hastings 2001, 2004, 

White et al. 2013). However, beach surveys are often the only way biologists can encounter sea 

turtles and measure abundance, and in-water surveys can be cost prohibitive and often have very 

low encounter rates. This leads to a critical question: how can we optimize monitoring from the 

nesting beach to give the most accurate estimates of population size, recruitment and trends over 

time?   

In this dissertation, my research culminates in the development of the Monitoring 

Strategy Evaluation tool which was motivated by Management Strategy Evaluation (MSE) and 

its potential to benefit conservation of sea turtles. MSE is a simulation-based framework 

developed by fisheries scientists to evaluate trade-offs in alternate management schemes and to 

assess the consequences of biological and management uncertainty for achieving management 

goals (Smith et al. 1999, Punt et al. 2014). MSE simultaneously considers three main aspects of 

the biological-management cycle: the biological system (operating model), the observation 

process, and population assessment and management (Sainsbury et al. 2000, Bunnefeld et al. 

2011). Bunnefeld et al. (2011) first suggested that MSEs may be applied to species of 

conservation concern and suggest several case studies of where MSEs have the potential to 

benefit endangered species management. More recently, MSEs have been applied to species of 

conservation concern. For example, MSEs have been used to set sustainable quotas for trophy 

hunting of African lions, despite a paucity in abundance time-series (Edwards et al. 2014), to set 

biological limit reference points for bycatch of pacific leatherback sea turtles in the US West 

Coast Exclusive Economic Zone (Curtis et al. 2015), and to evaluate trade-offs of the conflicting 
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objectives of biodiversity protection, benthic impacts from trawling, ecosystem function, and 

economics with the use of spatial closures in the Gulf of Carpentaria, Australia (Dichmont et al. 

2013). For endangered species, harvest options are not as pertinent (but levels of allowed take or 

bycatch may be evaluated), but the role of analyzing the observation model can be of the upmost 

importance. Endangered species are often considered data-poor or have low encounter rates with 

monitoring programs (Colyvan et al. 1999, Akçakaya et al. 2000) and understanding 

relationships between the little data available and true biological trends is critical. In Monitoring 

Strategy Evaluation (MoSE), I hold management constant, as the objective is often to increase 

population size and population growth from one year to the next. Instead, the accuracy of 

population status indicators is compared for different monitoring strategies, rather like a power 

analysis used to estimate the ability to detect a decline in a population (Taylor & Gerrodette 

1993). Evaluating the accuracy of monitoring, and determining which data streams, and how 

long of a time-series is necessary to detect changes in population trend, will ultimately benefit 

sea turtles, and endangered species in general, and the MoSE is an important tool toward this 

goal.  

My research used long-term monitoring data on individual green sea turtles tagged on the 

primary nesting beach in Hawaii to determine the degree of temporal variability in nester body 

length, breeding probability, adult survival and size-at maturity (Chapter 2). I asked three 

questions:  Do the demographic indicators (annual survival rate, annual breeding probability, 

nester carapace length, and size-at-maturity) show temporal trends and fluctuations?  And if so, 

are the DIs correlated with nester abundance? And finally, which of these measures could serve 

as a good indicator of population size and status (i.e. increasing, decreasing or stable over time)?   

In this analysis, I developed an approach to evaluate temporal changes in life history traits and to 
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evaluate them for density-dependence, and temporally variable life history traits may serve as 

indicators of population change.  

Using estimates of the demographic indicators from Chapter 2, I built an agent-based 

model of green sea turtles (GSTABM; Chapter 3). I created the GSTABM to simulate green sea 

turtle population dynamics, population disturbance and recovery, and to simulate the processes 

of monitoring and population assessment. Ultimately, I wanted to contrast the recovery dynamics 

of populations subjected to different kinds of disturbance histories to answer three main research 

questions: (1) Can the GSTABM adequately reproduce the population dynamics of green sea 

turtle populations? (2) How do the recovery dynamics differ when the disturbance occurs to 

different demographic groups (e.g., older turtles and eggs), and 3) what predictions can we make 

from the GSTABM regarding recovery dynamics of green sea turtles?  

The GSTABM is the operating model used to develop a new assessment tool – 

Monitoring Strategy Evaluation (MoSE; Chapter 4). The MoSE approach is novel in that it 

specifically experiments with monitoring strategies to determine how observation errors 

propagate to population assessment errors, such as inaccurate estimates of adult abundance, 

recruitment and population trend. My primary goal is to provide advice on how to optimize 

monitoring actions on nesting beaches used to assess populations of sea turtles. I asked four main 

questions: Given each biological (process variability) and observation (measurement variability) 

scenario, can we accurately estimate population size, recruitment, and population trend? How 

long of a time-series is necessary to accurately estimate population trend? What are the 

probabilities of false positive and false negative trend diagnoses?  Does the population structure 

and harvest legacy influence which monitoring strategy is best?   
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Declining and recovering species exhibit transient dynamics and this has important 

implications for accurately assessing population size and trend. Green sea turtles are currently 

undergoing recovery in many populations and have a complex life history and most monitoring 

focuses on a narrow portion of the life cycle: female breeders and their nests. The recovery 

provides an important opportunity to improve our knowledge of the dynamics of species 

recovery and the relationship with monitoring and population assessment. My modeling 

framework presented here is designed to provide an evaluation of monitoring program 

effectiveness to assist in planning future programs for sea turtles. Ultimately this research could 

be applied to other endangered species, particularly those where monitoring is limited or 

challenging. The quantitative tools employed here can be applied to other sea turtle populations, 

and endangered species, and will improve monitoring, and result in better estimates of current 

population trends and enhance conservation for all species of sea turtles. 
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ABSTRACT 

Several populations of green sea turtles show signs of population recovery. In Hawaii, 

green turtles have increased 5.4% year
-1

 since 1973, but wide fluctuations in census counts of 

nesting females make recovery diagnosis difficult. Evaluating demographic rates for temporal 

change and in relation to population density, and indicators of recruitment to sea turtle nesting 

populations will ultimately improve population assessments. Using linear mixed and multistate 

open robust design models, we estimated the demographic indicators (DIs) of size-at-maturity, 

nester carapace length, breeding probability, and adult female survival rate using 3,677 tagged 

nesting green turtles from 1973 - 2010 in Hawaii. To evaluate changes with density, we 

correlated the DIs with nesting female counts. We estimated size-at-maturity, assuming newly 

tagged nesters are tagged on their first nesting migration, and first-time nesters have statistically 

significant smaller carapace length than recaptures, but the difference in size was only ~0.5 cm 

year
-1

. Mean nester carapace length (range: 89.21 - 91.69 cm) and breeding probability (range: 

0.0766 - 0.444 year
-1

) showed directional changes over time, suggesting shifts in age structure 

that could be due to recruitment. The top-ranked model predicted constant female survival over 

time (S = 0.929 year
-1

, 95% CI: 0.924 – 0.933, model likelihood = 1.00). Counter to our 

hypothesis based on density-dependence, breeding probability increases with increasing nester 

abundance; this suggests that breeding probability is probably more driven by environmental 

influences than population densities, at least within the range of observed nester abundances. 

This work contributes to a growing set of studies evaluating sea turtle demography for temporal 

variability and is the first for Hawaiian green turtles. Our study demonstrates that some easily 

monitored demographic variables may serve as indicators of population change.  
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2.1 INTRODUCTION 

 

Some populations of green sea turtles (Chelonia mydas) have experienced remarkable 

recovery from over-exploitation in the last decades, but with a great deal of interannual 

fluctuation in the numbers of nesters and nests, the primary demographics monitored by 

biologists (Chaloupka et al. 2008, NOAA & USFWS 2015). Populations undergoing recovery 

often display wide fluctuations in abundance and population growth rates. These fluctuations 

could be the result of demographic stochasticity, particularly early on in the recovery process, 

inter- and intra-specific interactions or environmental variation (Saether et al. 2004, Shelton & 

Mangel 2011). Regardless of the cause, interannual variability in abundance makes it difficult to 

determine population trends to quantify the rate of recovery and to make predictions. 

Variation in life history traits occurs across species, populations, and individuals 

(Gotthard & Nylin 1995, Cam et al. 2002, Bjorkvoll et al. 2012). Crucially, in the case of 

overexploited or endangered species, population perturbations may have important and persistent 

effects on demographic rates, which may affect a species’ resilience. Research suggests a degree 

of plasticity in vital rates that may be a function of environmental factors, population density, 

and age structure; these factors may be particularly important in populations that are recovering 

from perturbations, in which population density and age structure are changing rapidly (Gotthard 

& Nylin 1995, Kuparinen & Merila 2007). In turn, population-level changes in demographic 

rates may affect the ability of species to recover. For example, in several populations of Atlantic 

cod (Gadus morhua), fisheries-induced changes to mean size- and age-at-maturity have likely 

decreased the ability of this species to recover from overfishing (Hutchings 1996, 2000, 

Hutchings & Reynolds 2004). Conversely, as abundance increases and age structure is restored, 

demographic rates may return to pre-disturbance levels (Conover et al. 2009). Studies of 
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demographic rate changes in the context of population depletion or recovery suggest that shifts in 

mean growth, survival, or reproduction are important to consider in modeling exercises to 

evaluate future trends and response to management (Rochet 2000a, b, Gerber & Heppell 2004, 

Thorson et al. 2015). 

We hypothesize that once populations are in the process of recovery, changes in 

demographic rates or life history traits can also give an indication of the status of the population, 

hereafter referred to as demographic indicators (DIs). However, we must first understand how 

DIs and their variability are linked to abundance. If a DI displays a trend in response to decline 

or recovery, then the DI can be linked to population density (Bjorndal et al. 2000, Sæther & 

Bakke 2000, Caut et al. 2006, Hutchings, Myers, et al. 2012). Conversely, if a DI has high 

interannual variability but no significant trend, the variability itself could affect population 

growth, abundance, and recovery rates (Mazaris & Matsinos 2006, Bjorndal et al. 2010). Further, 

the timeframe in which DIs are estimated in relation to the status of the species (e.g., prior to 

exploitation, during, or post-exploitation) can have important ramifications for population 

assessments, especially if temporal variability is not accounted for in the estimation process. For 

long-lived species with long generation times, it is also important to account for time lags in 

changes to DIs. For example, in a study of Kemp’s ridley sea turtles (Lepidochelys kempi), 

Heppell et al. (1996) found that recovery times depend on age at maturity, as newly protected 

age classes recruit into the adult population. Population models often must rely on estimates of 

DIs from the literature, which often come from historic references, taken at times that no longer 

directly pertain to the current population. This imprecision of DI estimates can have important 

implications on accurately estimating abundance and population growth, and forecasting short-
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term and long-term trends, even though temporal variability in DIs is rarely measured in sea 

turtle studies (Bjorndal et al. 2010, Richards et al. 2011).  

To understand how DIs vary over time and in relation to abundance of a long-lived 

species, we examined a well-studied population of green sea turtles in Hawaii. A recent National 

Research Council (NRC) report emphasized that monitoring the numbers of nesters or nests is 

insufficient to diagnose changes in population size (Bjorndal et al. 2010). Rather than focusing 

on indices of abundance, the NRC report emphasized research toward quantifying changes and 

variability in key DIs to better understand the relationship with DIs and population abundance 

and population growth. Looking to the future, many sea turtle monitoring programs may not be 

able to continue indefinitely or may not be able to supply the work force to keep pace with the 

size of recovering populations (and maintain sufficient detection probabilities). Examining DIs 

may be one solution and could complement monitoring index nesting beaches, especially as 

changes in DIs may give important context to observed changes in abundance on nesting 

beaches.  

Green sea turtles are listed as an endangered species throughout most of the USA and are 

a threatened species in Hawaii (NOAA & USFWS 2015). However, the population has 

experienced remarkable recovery in the last two decades with an estimated 5.4% year
-1

 increase 

in the nesting population in the Hawaiian Islands since 1973 (Fig. 2.1; Chaloupka et al. 2008, 

Balazs et al. 2015). Population recovery is primarily attributed to elimination of hunting pressure 

for juvenile and adult sea turtles in the Hawaiian Islands (Balazs & Chaloupka 2004b). Intensive 

monitoring of this recovering population and its relative geographic isolation make it an 

excellent case study for examination of temporal variability in demographic indicators.  
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Because of fisheries management and conservation measures, it is also likely that vital 

rates of green turtles in Hawaii have changed over time, in the absence of hunting pressure and in 

response to changes in population density (Gotthard & Nylin 1995, Hutchings 1996, 2000, 

Hutchings & Reynolds 2004, Conover et al. 2009). Existing estimates of the number of years 

females spend between nesting (remigration interval) and mean body size of Hawaiian green sea 

turtles do not account for changes in the vital rates, even though data collection began in the 

1970s, when harvest was still permitted (Balazs 1980, Balazs et al. 2015). In addition, some of 

these estimates were taken from short-term field studies, with relatively small sample sizes of 

females (Balazs 1980, Van Buskirk & Crowder 1994). Adult female annual survival rate for 

Hawaiian green turtles was recently estimated using matrix projection models and Monte Carlo 

techniques for optimization, but survival rate was not evaluated for temporal variability, nor was 

uncertainty estimated (Van Houtan et al. 2014).  

We hypothesize that DIs will be different today than when the population was at very low 

density. Protection of the neritic, or near-shore, life stages from harvest should result in high 

annual survival and strong recruitment of new nesters each year (Campbell & Lagueux 2005, 

Troeng & Chaloupka 2007). As the population grows and approaches carrying capacity, 

remigration interval would increase as greater intraspecific competition for resources makes it 

harder for females to build up physiological stores for egg-laying (Miller 1997, Troeng & 

Chaloupka 2007). During recovery, as age structure is restored, it is likely that mean nester size 

and size-at-maturity will decrease as new cohorts recruit into the adult population (Crowder et al. 

1994).  

To address the issue of temporal variability in DIs and their relationship with abundance 

and population recovery, we asked three questions:  Do the demographic indicators (annual 
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survival rate, annual breeding probability, nester carapace length, and size-at-maturity) show 

temporal trends and fluctuations?  And if so, are the DIs correlated with nester abundance? And 

finally, which of these measures could serve as a good indicator of population size and status 

(i.e. increasing, decreasing or stable over time), given that we have strong evidence that this 

population is recovering? Using a 38 year mark-recapture data set from the principle nesting 

ground, we evaluated these questions for a population that has grown more than an order of 

magnitude, from about 35 nesting females to a peak of nearly 600.  

2.2 MATERIALS AND METHODS 

 

Study population - Hawaiian green sea turtles  

Green sea turtles in Hawaii were recently categorized as a distinct population segment 

based on mitochondrial DNA, anatomical features, and migratory patterns (Dutton et al. 2008, 

NOAA & USFWS 2015). There is little gene flow between Hawaii and other populations 

throughout the Pacific Ocean. The vast majority of nesting takes place in the Northwestern 

Hawaiian Islands (NWHI) and the largest rookery is at East Island, French Frigate Shoals, where 

approximately 50% of Hawaiian nesting occurs, and where continuous monitoring has occurred 

since 1973 (Balazs 1980, Balazs & Chaloupka 2004b). East Island is a small sandy atoll, ~0.036 

km
2
, surrounded by a shallow lagoon on the western side and a fairly steep shelf on the eastern 

side. Generally, nesting site fidelity at French Frigate Shoals is high (~ > 95%; Balazs 1980, 

Dizon & Balazs 1982, Bowen et al. 1992). Females generally will not nest in the year 

immediately following a nesting year (i.e. obligate skip-nesting), and vary in the number of years 

between nesting migrations. The length of the remigration interval depends on energetics, 

physiology, and environmental conditions (Chaloupka & Limpus 1996, Miller 1997, Limpus & 

Chaloupka 1997, Solow et al. 2002). Within a nesting season, Hawaiian green turtles will return 
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several times to lay an average of four clutches at approximately 2 week intervals (Balazs 1980, 

Tiwari et al. 2010), so the probability of sighting an individual turtle at least once during a 

season in which she breeds is high.  

Historically, green sea turtles were abundant and nested throughout the entire Hawaiian 

Islands chain (Kittinger et al. 2013). Nesting contracted to the NWHI sometime in recent history, 

but prior to modern scientific records (as late as the early 1950s), and was most likely due 

initially to subsistence harvest of sea turtles and then later by more intensive commercial harvest 

(Balazs 1980, Witzell 1994, Kittinger et al. 2013). Generally, nesting in the NWHI was naturally 

protected by its remoteness from permanent human settlements, however, intermittent harvest 

from ships passing through the area and by the military probably occurred and egg harvest was 

extremely limited before protection, unlike many other sea turtle rookeries globally (Balazs 

1980, Mast et al. 2011). Sea turtle harvest was tightly regulated by the “kapu” system of native 

Hawaiians, but after European colonization, around 1819, this system began to erode (Balazs 

1980). In the 20th century, numbers of green sea turtles dropped precipitously as harvest 

intensified and became more commercialized in the Hawaiian Islands (Balazs 1980, Witzell 

1994, Van Houtan & Kittinger 2014). Fishermen often selected juveniles, sub-adults and smaller 

adults for harvest, and shifted towards larger animals and fish trips moved offshore towards the 

end of the fishery (Balazs 1980, Witzell 1994, Kittinger et al. 2013, Van Houtan & Kittinger 

2014). In 1978, green sea turtles were placed on the endangered species list and harvest was 

prohibited (NOAA Office of Protected Resources 2014).  

Data description 

  Globally, the Hawaiian green sea turtle nesting population experienced one of the most 

continuous and consistent monitoring efforts. We used data from the NOAA Pacific Islands 
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Fisheries Science Center Turtle Research Program (TRP). Nesting at East Island was monitored 

annually, during the summer months, since 1973, first by G. Balazs and the Hawaii Institute of 

Marine Biology and then by NOAA Fisheries and the US Fish and Wildlife Service from 1981 

onward (Nurzia Humburg & Balazs 2014). Data collection was conducted under proper 

approved State of Hawaii and US Federal permits. Survey effort and duration varied annually 

depending on a number of logistical factors (Balazs & Chaloupka 2004b), ranging from nine 

(1977) to 143 (1989) nights. Females that emerged to nest were individually marked with flipper 

tags, etched with an electric drill, and painted for easy re-identification at a distance during the 

rest of the nesting season. Double-tagging with passively integrated transponder (PIT) tags was 

instituted in 1996 to improve individual turtle identification, as flipper tags can be lost. When 

encountered, turtles were checked for existing tags, carapace length was measured, and nesting 

behavior was noted (e.g., body pit excavation, egg laying, covering nest burial). The TRP 

maintains a tag database of all turtles encountered on the nesting beach. Previous evaluation of 

the nesting beach data during a period of extended intensive survey (1988-1992) suggests that 

56-66% of nesting females identified each year were newly tagged (Nurzia Humburg & Balazs 

2014). However, in years where sampling did not cover the entire nesting season, it is possible 

that some nesters, particularly those females who started nesting early or late in the season (since 

sampling strives to cover the mid-point of the nesting season), were not captured during their 

first nesting season and would not be tagged until a return nesting migration.  

Temporal analysis of demographic indicators 

Size-at-maturity – Carapace length distributions of newly tagged and veteran nesters 

 Newly tagged turtles likely represent neophyte (first season) nesters, and size at first 

tagging likely represents the minimum size-at-maturity for those animals (Richardson et al. 
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2006), given the history of nesting season surveys. In using this approach, we assume that these 

newly tagged (nominal neophytes) nesters have not nested in previous seasons or on other 

unmonitored islands in Hawaii. We used 1981 as our first year of analysis, because it was the 

first year in which the percentage of newly tagged turtles stopped increasing, following a high 

percentage in the early years when the monitoring program first started, after this initial tagging 

effort  (Nurzia Humburg & Balazs 2014). We plotted the straight carapace length (SCL; cm) of 

newly tagged turtles (i.e. nominal neophytes) and veteran turtles (turtles with tags or tag scars) 

across years to determine if there were differences in carapace lengths between the two groups. If 

an individual was measured multiple times within a season, we took the average of the 

measurements, as it is unlikely adult sea turtles would grow appreciably within a nesting season. 

We tested the fit of the residual SCLs to a normal distribution and found no significant departure 

from that distribution. We then statistically tested for differences using linear mixed models 

(LMM) with a restricted maximum likelihood estimator, and accounted for the temporal 

autocorrelation within individuals, and across years, using a specified covariance structure (e.g., 

AR(1), Toeplitz, compound symmetry, etc.), in SAS 9.3. Linear mixed models are advantageous 

compared to other statistical methods in that they can take advantage of repeated measurements 

across individuals, account for the intrinsic autocorrelation of repeated measures, and correctly 

characterize the variance associated with the estimated parameters (Littell et al. 1998, Bolker et 

al. 2009). The candidate model set included an intercept-only null model, a categorical year 

effect, a tagging effect (tagged or untagged), or year and tagging effects. We tested various 

covariance structures for temporal autocorrelation of individual turtles, and compound symmetry 

had the best model fit.  

Carapace length-distributions – Linear Mixed Models 
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To test for differences in carapace length over time, we estimated the mean SCL of 

nesters each year using LMM with a restricted maximum likelihood estimator, in SAS 9.3. We 

followed the same modeling routine as with size-at-maturity. We tested various covariance 

structures for temporal autocorrelation of individual turtles, and compound symmetry had the 

best model fit. The candidate model set included an intercept-only null model, and a categorical 

year effect, along with the tested covariance structures.  

 Survival and reproduction vital rates – Mark and recapture-based models  

  We used a multi-state open robust design model (MSORD), with an unobservable state, 

to estimate the transition probabilities of moving from nesting to foraging states and from 

foraging (unobservable) to nesting (ψN→F and ψF→N, respectively), detection probability (p), 

probability of entering the nesting state (pent), and the probability of remaining in the nesting 

state (φ), using maximum likelihood in Program Mark, version 7.1 (Pollock 1982, Kendall & 

Bjorkland 2001, Kendall & Nichols 2002, Cooch & White 2013, Kendall 2013). The MSORD 

model accounts for sampling error and confounding between mortality and non-detection 

(Kendall & Nichols 2002, Kendall 2013). The robust design provides secondary within season 

information, which improves parameter estimation and precision (Kendall & Nichols 2002). 

Open robust design models permit the relaxation of two assumptions of closed populations: the 

population is closed to additions and deletions within a primary season, and each member of the 

population has an equal probability of being available for detection in a given time period 

(Kendall & Bjorkland 2001). Following the approach of Kendall and Bjorkland (2001), we 

divided the nesting survey season into 14 day periods, because the average inter-nesting interval 

for green sea turtles in Hawaii is 13.4 days (range: 11 – 18 days) and this was the optimal period 

after preliminary iterative testing of the interval length (Balazs 1980, Kendall & Bjorkland 
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2001). The total number of within-season survey periods varied annually depending on the total 

number of survey nights in a primary season. The parameters were modeled as time-varying or 

constant for each primary (year) and secondary (14-day) period. Survival for nester and non-

nesters was assumed to be equal. For the unobservable state (skip-nesting), pent, φ, and p are set = 

0. For models with full time-dependence in detection probability (ptt), it is necessary to set the 

final year equal to the previous year (i.e., p2008=p2009) to avoid issues with parameter estimation 

(Kendall 2013). We modeled within season temporal effects on pent as a multinomial distribution 

so that within secondary periods, pent summed to one. We were only able to run these models for 

1981-2009, as 1973-1980 and 2010 did not have large enough sample sizes or long enough 

primary seasons for the models to converge.  

The transition probability ψF→N may be used as an estimate of annual breeding 

probability, as only females observed on the nesting beach in the process of nesting (e.g., egg 

laying, nest burial, complete crawls up to nest and back to the water, etc.) were included in the 

dataset (Kendall & Bjorkland 2001). Since many turtles bask on East Island, and potentially 

could give a false positive of nesting, and ultimately yield a biased estimate of breeding 

probability, we only included confirmed nesting events in the dataset. With this model structure, 

we were also able to test for random transition probabilities, where the probability of 

transitioning from a nester to skip-nester equaled the probability of transitioning from skip-nester 

to nester (ψN→F = ψF →N), and Markovian transition probabilities, where the probability of 

transitioning from nester to skip-nester does not equal the probability of transitioning from skip-

nester to nester (ψN→F ≠ ψF →N),  and this ultimately tests the occurrence of obligate skip-nesting 

(Kendall & Bjorkland 2001, Kendall 2013). Typically, breeding frequency for sea turtles is 

calculated as (remigration interval)
-1

 (Bjorndal et al. 2010). We back-calculated remigration 



19 

 

 

interval as 1+ ψF →N
 -1

. If annual breeding probability is the probability of becoming a nester 

when an individual was a skip nester in year t-1, then it is necessary to add one year to ψF →N
 -1

 to 

account for the additional year it would take to go from nester to skip-nester (as green sea turtles 

are obligate skip nesters).  

It is also possible to derive clutch frequency from the tagging data using the MSORD 

model, based on the residence time of sea turtles in the nesting state. However, we did not 

include it here because of a strong bias with the number of secondary sampling periods, where 

years with fewer secondary periods had a lower estimate of clutch frequency (see Appendix A 

for more information).  

We tested the hypothesis that temporal variation was important in the estimation of the 

DIs by determining if a model containing temporal effects on survival and breeding probability 

was top-ranked based on Akaike Information Criterion correction for small sample sizes (AICc). 

First, we tested a variety of models with temporal effects within and across seasons for the 

parameters p, pent, and φ, and assumed temporal effects across and within seasons for adult 

annual survival (S), the probabilities of transitioning from nester to skip-nester, and skip-nester 

to nester (ψN→F, and ψF →N, respectively). Using the best-fitting model, we then tested for 

temporal effects of S and ψ, and whether ψN→F = ψF →N. In addition, we explored different 

parameterizations of ψ, using the initial second ranked model as well.  

Currently, no standardized goodness-of-fit test exists for MSORD models, although some 

experimental methods have been tested. As an alternative, we ran a median ĉ test (Cooch & 

White 2013) on a simplified multistate fully time-dependent model (with nesters and 

unobservable skip-nesters, but no robust design), and found that ĉ = 1.489 (1.466 – 1.513 95% 
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CI). Previous research indicates ĉ  ≤  3.0 is acceptable and suggests a reasonable fit of the model 

to the data (Lebreton et al. 1992).  

Model Selection procedures 

For all analyses, we compared models with and without a year effect to test for temporal 

trends in DIs. Model selection was based on AICc and the information-theoretic approach to 

select the most parsimonious model of the candidate model set (Burnham & Anderson 2002). In 

the information-theoretic approach, candidate models represent biological hypotheses, and are 

tested via the degree of quantitative support, i.e. model likelihoods and AICc (Burnham & 

Anderson 2002, Johnson & Omland 2004). Model selection is preferred to traditional null 

hypothesis testing for observational data, where no explicit experimental framework is imposed 

or when multiple models have the potential for similar levels of support (Anderson et al. 2000, 

Burnham & Anderson 2002, Johnson & Omland 2004). We compared the top model to an 

intercept-only model that represented the null model, and used evidence ratios to assess the 

strength of evidence for the top-ranked model (Anderson et al. 2000). Evidence ratios (ρ) are 

calculated by dividing the AICc weight of the model containing the term under consideration 

(wi) by the AICc weight of the model when the term is removed (wj). The greater ρ, the more 

important the explanatory variable of interest is as a predictor in the model. 

Nester abundance estimation 

 We used estimates of nester abundance derived from a model by Wetherall et al. (1998) 

in our analysis (Fig. 2.1). Wetherall et al. (1998) developed a method using an Horvitz-

Thompson type estimator to estimate the number of nesters based on the number of survey nights 

in a given season, and using the covariates of arrival time, nesting frequency, nesting duration, 

and inter-nesting interval (see also (Balazs & Chaloupka 2004b). Their sighting probability 
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function was calibrated using the entire nesting season census derived from nightly emergence 

probabilities during a five year period of saturation tagging (1988-1992; Wetherall et al. 1998). 

Confidence intervals were derived using an empirical bootstrap approach for each annual 

estimate. We used this approach as it was an independent method to estimate nester abundance, 

rather than the abundance estimates derived from the MSORD approach, which uses the 

estimates of ψF→N (i.e. breeding probability) in the calculation.  

Demographic indicators and nester abundance   

 If the top-ranked model included a temporal effect on a DI, we tested for a relationship 

between the annual estimate of the demographic indicator and the estimated nester abundance for 

the given year. We used generalized linear models (GLMs) to test for relationships between 

ln(Nester Abundance) and the DIs in R (version 3.0.1) with the packages car, MASS, gvlma, and 

MuMIn. We modeled SCL with a Gaussian distribution, and all assumptions of a linear model 

were met based on tests of skewness, kurtosis, and heteroscedasticity. Breeding probability was 

best fit by using a gamma distribution. We compared the models with and without ln(Nester 

Abundance), i.e. intercept-only, using evidence ratios, to test our hypothesis that nester 

abundance and the DIs are related (Burnham & Anderson 2002).  

 

2.3 RESULTS 

 

Size-at-maturity – Carapace length distributions of newly tagged and veteran nesters 

 A total of 3,277 individual turtles were examined for differences in the mean carapace 

length of nominal neophyte and veteran nesters, with 6,773 total observations (with repeated 

measurements on turtles across years). Substantial overlap existed in the size distributions for the 

two groups for all years (Fig. 2.2). However, we found that the model, which included the 
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tagging effect and a categorical year effect, along with a compound symmetry covariance 

structure to account for temporal autocorrelation within individual turtles, was orders of 

magnitude more likely than the null model (Table 2.2). While the top ranked model included 

tagging status as a predictor (i.e., newly tagged or veteran nester), the magnitude of the 

difference was small: the estimated range of the yearly means of SCL for newly tagged turtles 

was 89.3 cm (95% CI: 88.4 – 90.2) to 91.2 cm (95% CI: 90.7 – 91.7) and the range for veteran 

turtles was 89.8 cm (95% CI: 88.9 – 90.3) to 91.7 (95% CI: 91.3 – 92.2) (Fig. 2.3; Table S1). 

This amounts to roughly 0.5 cm difference in carapace length between newly tagged and veteran 

nesters each year, which falls within measurement error. As such a small difference in carapace 

length between nominal neophyte and veteran nesters, we did not distinguish neophytes and 

veterans for the rest of the analysis.  

Temporal analysis of carapace length 

Year was an important predictor of carapace length, based on the top ranked model, 

which included annual estimates of carapace length, and a compound symmetry covariance 

structure to account for temporal autocorrelation within individual turtles. A total of 3,677 

individual turtles were included, with 7,348 total observations (with repeated measurements on 

individual turtles across years). Carapace length experienced temporal variability from 1973 to 

2010, and the estimates of SCL ranged from 89.21 (95% CI: 88.97 - 89.46) in 1988 to 91.69 

(95% CI: 91.50 - 91.8) in 2008 (Table 2.1 and Fig. 2.4). While the top ranked model included 

year as an important predictor of SCL, there was not a strong directional trend in the estimates of 

SCL over the entire time-series, but short-term trends of increasing SCL over several years 

followed by steep declines in SCL were apparent (Fig. 2.4). Moreover, more general longer term 
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trends (~ 10 years) were apparent; after a period of declining SCL (1977-1989), turtle lengths 

began to increase.  

Mark-recapture modeling of demographic indicators (DIs) 

Temporal variation figured prominently in the top-ranking MSORD model used to 

estimate annual survival rate, breeding probability, probability of entering the nesting state, 

probability of remaining in nesting state, and detection probability. The top-ranking model 

included a full model weight of 0.999 and model likelihood of 1 (Table 2.3). A total of 3,405 

individual turtles were included in the encounter histories and 2,678 turtles were recaptured at 

least once. The top-ranking model did not include temporal variation in annual adult female 

survival (S= 0.929 year
-1

, 95% CI: 0.924 – 0.933; Table 2.1).  

Breeding probability, or the probability of transitioning from a foraging to nesting, was 

estimated annually in the top-ranking model. Annual breeding probability ranged from 0.0766 

(95% CI: 0.0574 - 0.102) in 1998 to 0.444 (95% CI: 0.398 – 0.490) in 1997 (Table 2.1 and Fig. 

2.4). If these probabilities were constant for individuals, they would correspond to remigration 

intervals of 3.25 – 14.1 years. The top ranked model included year as an important predictor of 

breeding probability, but there was not a strong linear trend over the whole time series, though 

there were short-term trends of increasing breeding probabilities, followed by steep drop-offs 

(Fig. 2.4). The strong cyclic pattern appears to dampen in later years of the time series, but 

additional years of data are needed to verify this.  

The top-ranking model also included a constant estimate of transition probability of 

nesters moving to skip-nesting, 0.989 (95% CI: 0.925 – 0.998). This result corroborates a wide 

body of previous research that nearly all individual females will not nest the year immediately 
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following nesting, and take at least two years to return to the nesting beach, and likely much 

longer on average (Miller 1997, and references therein).  

For detection probability, the top-ranking model included temporal estimates for both 

within season and across season effects (Table 2.3). The range of estimates for detection 

probability was 0 (95% CI: 0- 1) – 1(95% CI: 0-1), e.g., p = 0 in the third secondary sampling 

period in 1982, and p = 1 in the first secondary sampling period of 1984 (Table 2.1). Notably, the 

MSORD models can have difficulty in estimating parameters and the uncertainty of those 

estimates when estimates are close to their boundaries of zero or one (Kendall 2013). In general, 

detection also varied across secondary periods within primary periods (years). For example, in 

2008, detection ranged from p2008,4 = 0.147 (95% CI: 0.118 – 0.0183) to p2008,2 = 0.970 (95% CI: 

0.947 – 0.983), where subscripts indicate the year and two-week within-season secondary 

periods. During the years of saturation tagging, 1988 – 1992, detection probabilities were higher, 

and ranged from 0.59 (95% CI: 0.39 – 0.76) to 1.00 (95% CI: 0 – 1).  

Demographic indicators as a function of nester abundance  

We did not find a strong relationship between mean SCL and nester abundance (Fig 4). 

The intercept-only model was selected over the models with temporal variation of SCL (Table 

2.4). We did not evaluate annual survival because the top-ranking model did not include 

temporal estimates of survival.  

Nester abundance was a good predictor of breeding probability – the probability of 

breeding increased with an increasing nester population (Fig. 2.5). Model selection of the 

regression between nester abundance and the breeding probability ranked the model with 

temporal estimates of breeding probability over an intercept-only model (no difference across 

years). The model with annual estimates of breeding probability was 11 times more likely than 
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the intercept-only model, based on evidence ratios (Table 2.4). To put this in terms of 

remigration interval, as the nester abundance increases, the remigration interval (the number of 

years between nesting events) decreases, which is counter to our original hypothesis regarding 

density dependence.  

 

2.4 DISCUSSION 

 

Overall, we found considerable variability in demographic indicators for Hawaiian green 

turtles, but little evidence of directional trends through time. This is the first analysis of temporal 

trends in survival rates for green sea turtles in Hawaii, and survival was estimated to be constant 

since 1981 (S = 0.929 year
-1

, 95% CI: 0.924 – 0.933). During the period of population recovery 

that we evaluated, the estimates of mean body length and annual breeding probability had 

important annual fluctuations, and this annual variability was supported by the model selection 

process. Neophyte nesters were statistically smaller than veteran nesters. However, as the 

difference was ~0.5 cm, on average, the practicality of applying the distinction of tagging status 

to determine size at sexual maturity is nonexistent for these data. We hypothesized that breeding 

probability and body size would decrease with increasing nester abundance, because of 

intraspecific competition. However, we found no relationship with body size and nester 

abundance and breeding probability appears to increase with greater nester abundance. But, as 

breeding probability has a relationship with nester abundance, it has potential to indicate 

population recovery. In all, our work contributes to a small but growing set of studies that 

evaluate changes in vital rates and life history traits over time for sea turtles, and ours is the first 

to do so for Hawaiian green sea turtles (Kendall & Bjorkland 2001, Troeng & Chaloupka 2007, 

Pfaller et al. 2013, Phillips et al. 2014, Garcia-Cruz et al. 2015).  
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Temporal variability of demographic indicators 

The estimates of temporal variability for our demographic indicators give insight into 

how this population may have changed over a 38 year time period. Although the data did not 

support a linear trend in the time series, short-term (3-4 years) and decadal cycling were evident 

in both mean nester body length and breeding probability. The amount of variability estimated 

for these DIs of sea turtles is not unprecedented (Limpus et al. 2003, Troeng & Chaloupka 2007, 

Limpus 2008, Phillips et al. 2014). Probably several drivers exist for observed short-term trends 

and the degree of temporal variability. Possibly, new cohorts of neophyte nesters that recruit into 

the adult reproductive population contribute to variation to the DIs. However, environmental or 

climate fluctuations could also be driving the temporal patterns (Carr & Carr 1970, Broderick et 

al. 2001, Solow et al. 2002, Chaloupka & Limpus 2005). Patterns in the DIs could be related to 

population density, because this population is increasing, based on multiple lines of evidence of 

trends in both adults and juveniles (Balazs & Chaloupka 2004a, Chaloupka & Balazs 2007, 

Chaloupka et al. 2008). However, our data suggest environmental stochasticity may be the 

dominant driver of annual variation in that the DI estimates vary annually and are not negatively 

correlated with nester abundance.  

We found decreasing turtle carapace lengths and breeding probability fairly early in the 

time series. Strong year classes recruiting into the adult reproductive population following 

harvest protection may be driving down the average size in years with high recruitment. Size-

selective harvest of sub-adults and smaller adults prior to ESA protection may have driven this 

population’s response to conservation measures (Van Houtan & Kittinger 2014). Egg harvest 

was extremely limited in the extant nesting beaches in the uninhabited NWHI, unlike many other 

sea turtle rookeries globally (Mast et al. 2011). In addition, fishermen selectively harvested 
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smaller individuals (Balazs 1980, Witzell 1994, Kittinger et al. 2013, Van Houtan & Kittinger 

2014). In an historical analysis, Van Houtan & Kittinger (2014) found that from 1948 – 1974, 

fishermen preferentially selected juvenile turtles (mean size= 30.5 kg, ~63.8 cm SCL), but 

towards the end of the fishery average sizes of landed turtles dramatically increased. According 

to skeletochronology, the mean size of turtles harvested corresponds to an estimated age of 

roughly 20 years (Zug et al. 2002). If age at maturity is 20 – 40 years (Balazs 1980, Zug et al. 

2002, Hargrove & Balazs 2012, Van Houtan et al. 2014), then we would expect to see sizeable 

changes in the adult population and in the age structure within the first 20 years after harvest was 

prohibited, as younger age classes experienced improved survivorship to maturity (Crowder et al. 

1994). If eggs had also been harvested, recovery would likely have taken much longer, as has 

been observed in the Florida green turtle population (Chaloupka et al. 2008, NOAA & USFWS 

2015). Ultimately, examining changes in juvenile size distributions over time may be a better 

indicator of population-level changes than sizes of adults, as juvenile size distributions could 

give an early indication of changes in age structure as cohorts “fill in” the gaps caused by 

exploitation (White et al. 2013).  

Long-term datasets are necessary to capture the full range of variability for breeding 

probability and its inverse, remigration interval. Our estimates of breeding probability and body 

length suggest significant variability, but are in line with some recent estimates. Balazs et al. 

(2015) estimated remigration interval of Hawaiian green turtles, summing data from 1973 – 

2013, to be 4 years (breeding probability = 0.25), in contrast to an earlier estimate of 2.47 years 

(breeding probability = 0.404; Table 2.1; Balazs 1980). Balazs et al. (2015) also found the mean 

body length for adult females in Hawaii to be 90.7 cm SCL, reduced from the original 1980 

estimate of 92.2 cm SCL (Table 2.1; (Balazs 1980, Van Buskirk & Crowder 1994, Balazs et al. 
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2015). We also found smaller mean carapace lengths of nesters than those reported for green sea 

turtle populations elsewhere. For example, the mean size of nesters in Tortuguero, Costa Rica 

was estimated to be 100.2 cm SCL, and in Heron Island, Australia was estimated at 102.4 cm 

SCL compared to 89.2 – 91.7 cm for this study (Table 2.1; Van Buskirk & Crowder 1994). The 

smaller average size of nesters may be due to the influx of younger animals into the Hawaiian 

population during the recovery period. Overall, our model selection procedures suggest that 

annual estimates of both breeding probability and body length are the more accurate than 

constant estimates and that significant interannual variability exists.  

Given that the top-ranked model for mean nester carapace length estimated a large range 

of mean sizes annually, suggesting potential cohort effects, it is surprising to see so little 

difference in the estimated sizes of newly tagged turtles, i.e. nominal neophytes, and veteran 

nesters (~0.5 cm difference year
-1

). In contrast, in the southern Great Barrier Reef, veteran turtles 

are on average 3 cm larger than neophyte nesters (Limpus 2008). There are at least two possible 

explanations for our result. First, newly mature green turtles may not all be tagged upon their 

first reproductive year, leading to inflated length estimates of nominal neophytes. Given the 

amount of effort on the nesting beach, it is unlikely that neophyte nesters are consistently missed 

by nest surveyors if those turtles are coming to East Island exclusively. But detectability could be 

lower for neophytes if those females have low nest site fidelity as they recruit into the adult 

population, i.e., some neophytes nest at other rookeries in the Hawaiian Islands, and then nest at 

East Island subsequently (Limpus et al. 2003, Tucker 2010). At least 95 individuals are recorded 

as nesting at East Island and other outlying islands in the NWHI at some time, corresponding to a 

3% rate of “infidelity” (unpublished reports, PIFSC). However, surveys at the other nesting 

rookeries in the NWHI are infrequent and opportunistic, so it is hard to quantify survey effort 
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outside of East Island. A second explanation for the size distribution overlap between newly 

tagged and veteran nesters is variable growth and size at maturation. Growth rates vary widely 

among individual turtles, with little or no growth following maturation (Balazs & Chaloupka 

2004a, Goshe et al. 2010, Avens et al. 2012, 2013). In captive-reared green sea turtles that were 

monitored from birth to past sexual maturity, wide variations in both age and size-at-maturity 

were observed (Bjorndal et al. 2013). This variability is likely to obscure distinctions between 

sizes of neophytes and veteran nesters. Further investigations of site fidelity and size at 

maturation, as well as development of physiological methods to identify newly mature turtles are 

needed to fully understand the implications of shifts in nester size during population recovery.  

We did not find evidence that survival rates varied over time from 1980-2009. Following 

ESA protection, survival rates were expected to increase, especially as adults were targeted for 

harvest towards the end of the fishery. However, survival rates had likely already increased by 

1980 (the first year included in the MSORD model), as there had been a campaign to protect 

green sea turtles in Hawaii in the 1970s; the state of Hawaii passed regulations restricting harvest 

starting in 1974 (Balazs 1980), and ESA protection formally occurred in 1978. Our results are 

comparable to the findings of Van Houtan et al. (2014), who used matrix models to 

deterministically estimate survival rates (Table 2.1). Our study is apparently the first to test 

whether the survival rate for Hawaiian adult females has changed since harvest was prohibited; 

however, a constant estimate was supported by model selection. In population models, it may be 

simplest to use a time-invariant constant estimate of survival, albeit with consideration of 

uncertainty, unless there is strong evidence for a change in adult survival over time. Mark-

recapture analysis is a valuable tool for detecting such changes, which could have profound 

effects on population productivity (Bjorndal et al. 2010). 
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Demographic indicators as a function of nester abundance  

We did not see a decrease in breeding probability as the Hawaiian green turtle population 

recovered, as might be predicted by density-dependence. This result suggests that either density-

independent factors are driving remigration (e.g., climate), or that the population is still below 

carrying capacity and not yet regulated by population density. In that case, the result also 

suggests that the Hawaiian population is still in the process of recovery and the population has 

not yet reached equilibrium. Because of the observed positive relationship of breeding 

probability, or its inverse remigration interval, with nester abundance, breeding probability 

shows promise as an indicator of nester abundance during periods of population recovery. Hays 

(2000) found in his theoretical models that when variability in forage quality was included, 

remigration interval was variable, drove interannual variation in nesting numbers, and 

interannual variation remained constant regardless of population size. Understanding the 

relationship between demographic indicators and population size is valuable for sea turtle 

populations that can only be monitored over a small proportion of their geographic range. Our 

results also highlight the importance of carefully interpreting raw counts of increased nester 

abundance,  as a positive trend could be attributable to increased nesting frequency – a greater 

breeding probability – and not necessarily a true increase in population abundance (Bjorndal et 

al. 2010). If breeding probability increases with nester abundance, as we report, estimated 

recovery rates may be inflated if only raw counts of nests or nesters (rather than the identities of 

nesters) are monitored across seasons (Pfaller et al. 2013). In the future, our results could be 

compared to other recovering populations of green sea turtles to determine if these are general 

trends.  
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Table 2.1. Published estimates of demographic indicators and estimates from this analysis for 

Hawaiian green sea turtles (Chelonia mydas). Pent = probability of entering nesting state, φ = 

probability of remaining in nesting state, and p = detection probability. See Appendix A for 

discussion of clutch frequency analysis. 

Demographic 

indicator 

Estimate or Range of 

Estimates in this 

analysis (95% CI) 

Published value Reference 

Size-at-maturity 

(cm) 

89.3 cm (88.4 – 90.2) – 

91.2 cm (90.7 – 91.7) 

89.7 (SD = 3.9), 

80 

Van Houtan et al. 

2014, 

Balazs and Chaloupka 

2004a 

Nester Straight 

Carapace Length 

(cm) 

89.21 (88.97 – 89.46) – 

91.69 (91.50 – 91.88) 
90.7, 92.2 

Balazs 1980, Van 

Buskirk and Crowder 

1994, Balazs et al. 

2015 

Annual Breeding 

Probability, ψ (year
-

1
) 

0.0766 (0.0574 –0.102) 

– 0.444 (0.398 – 0.490) 

0.25 (= 4
-1 

remigration 

interval), 0.404 

(=2.47
-1

 remigration 

interval) 

Balazs 1980, Van -

Buskirk and Crowder 

1994, Balazs et al. 

2015 

Adult Female 

Survival Rate (year
-

1
) 

0.929 (0.924 – 0.933) 0.930
 

Van Houtan et al. 2014 

pent 
0.000 (0 – 0) –  

1.000 (0 – 1) 
N/A  

φ 
0 (-1∙10

-6
 – 0.000001) – 

1 (0 – 1) 
N/A  

p 0 (0 – 1) – 1.000 (1 – 1) N/A  

Clutch Frequency 

(nests/season) 

1.39 (1.18 – 1.60) –  

4.96 (-30.7 – 40.6)
*
 

4, 

1.8 

Tiwari et al. 2010, 

Balazs 1980, Van 

Buskirk and Crowder 

1994, Balazs et al. 

2015 
* 
Estimates restricted to years with ≥ 5 secondary sampling periods 
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Table 2.2. Evidence ratio (ρ) for straight carapace length (SCL) during the years 1981-2010 as a 

function of tagging status (newly tagged or veteran nester) and year compared to an estimate 

without tagging status. Evidence ratios are calculated as the ratio of the Akaike Information 

Criterion correction (AICc) of the best model with and without the variable of interest. 

 

SCL 

 

1981-2010 

AICc weight for best model with Tagging Status Effects, wi 1.000 

AICc weight for best model without Tagging Status Effect, wj 2.12 ∙ 10
-233

 

Evidence Ratio, ρ (wi/wj) 4.713 ∙ 10
232

 

 

Table 2.3. Akaike Information Criterion correction (AICc) for five highest ranking models fit to 

capture-recapture data collected from breeding green sea turtles (Chelonia mydas) at East Island, 

French Frigate Shoals, Hawaii, 1980-2009. S=survival rate, ψ = transition probabilities between 

the two states, nester and skip-nester (N and F, respectively), pent = probability of entering the 

nesting population, φ = probability of remaining in nesting population during a secondary 

sampling period, p=detection probability, and L = likelihood. Survival for nesters and skip-

nesters is assumed to be equal. For the unobservable state (skip-nesting), pent, φ and p are set = 0. 

Constant = constant estimate over time, Time = separate estimate for each time period, 1⁰ = 

single estimate per primary period, and 2⁰ = single estimate per secondary period. AICc weight 

indicates the relative support and fit of each model. 

Model S ψN to F ψF to N pent φ p 
# 

Par 
Δ AICc 

AICc 

Weight 

Model 

L 

1 Constant Constant Time Time Time Time 309 0 0.99999 1 

2 Constant Time Time Time Time Time 335 23.8029 0.00001 0 

3 Time Time Time Time 2⁰ Time 311 69.9503 0 0 

4 Constant Constant Time 1⁰ Time Time 231 129.0565 0 0 

5 Constant Time Time 1⁰ Time Time 259 182.9021 0 0 
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Table 2.4. Evidence ratios (ρ) calculated separately for two demographic indicators (mean SCL 

and breeding probability) as a function of nester abundance compared to a simple model without 

temporal variation. Evidence ratios are calculated as the ratio of the Akaike Information 

Criterion correction (AICc) of the best model with and without the variable of interest. 

 

Demographic Indicator 

Mean 

SCL 

Breeding 

Probability  

(ψF to N) 

AICc weight for best model with temporal effect of DI, wi 0.562 0.910 

AICc weight for best model without temporal effect of DI, wj 0.817 0.0808 

Evidence Ratio, ρ (wi/wj) 0.688 11.26 
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Figure 2.1. Abundance of nesting green sea turtles, Chelonia mydas, at East Island, Hawaii based 

on counts of observed individual turtles, the estimated number of nesters (using the method of 

Wetherall et al. 1998), and the estimated number of nesters using the top-ranked multistate open 

robust design model (MSORB) at East Island, French Frigate Shoals, Hawaii 1973-2010. Dotted 

lines indicate 95% confidence intervals around the estimated number of nesters. Extreme values 

for the 95% confidence intervals in some years were left off for better visualization of the data. 
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Figure 2.2. Box-and-whisker plot of straight carapace length (cm) of newly tagged and veteran 

nesters from 1981 to 2010 at East Island, French Frigate Shoals. 1973-1980 were excluded to 

account for untagged veteran nesters. Black dots indicate outliers.  
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Figure 2.3. Linear mixed model estimates of mean straight carapace length (cm) of newly tagged 

and veteran nesters (± standard error) at East Island, 1981-2010. 1973-1980 were excluded to 

account for untagged veteran nesters.  
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Figure 2.4. Annual estimates of demographic indicators (± standard error): mean straight 

carapace length of nesters (cm) based on linear mixed models (LMM) from 1973-2010 (A), and 

mean breeding probability (year
-1

) based on multistate open robust design models (MSORD) 

from 1980-2009 (B). Remigration interval (years between nesting seasons) equals breeding 

probability
-1

 +1 (see Methods: Survival and reproduction vital rates). Dashed lines refer to the 

published estimates and the dot-dash line represents the recent constant estimates of Balazs et al. 

(2015) of the demographic indicators. 
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Figure 2.5. Relationships between ln-transformed estimates of nester abundance (based on an 

estimation model developed by Wetherall et al. 1998) and two demographic indicators, mean 

straight carapace length (SCL,  ± SE) (A) and breeding probability (± SE) (B). The predicted 

values of SCL are based on a generalized linear model (blue dashed line) with a Gaussian 

distribution and 95% confidence interval (CI; blue dotted line), and breeding probability is based 

on a generalized linear model with a gamma distribution and 95% CI. The red dashed line 

indicates the regression line for an intercept-only model (which represents the null model where 

there is no relationship between the demographic indicator and nester abundance) and 95% CI 

(red dotted line).   



40 
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ABSTRACT 

Green sea turtles are threatened globally, as some populations continue to decline while 

others are recovering. Recovery efforts may be confounded by complex life history and 

reproductive behavior, with individual variation in reproductive output of adult females. Most 

monitoring efforts encounter sea turtles on rookeries and census nesters, nests, or both. Because 

of skip-breeding and inter-annual variability in nesting, monitoring rookeries provides an 

imperfect mirror of true population level changes in abundance. We used demographic 

parameters estimated from the Hawaiian green turtle population to develop and implement the 

green sea turtle agent-based model (GSTABM) to simulate population dynamics, population 

disturbance and recovery, and to simulate the processes of monitoring and population 

assessment. The GSTABM simulates individual variability in age-at-maturity, clutch size, clutch 

frequency, and skip-breeding behavior. We added biological complexity to the GSTABM to 

simulate an annually changing breeding probability based roughly on climate anomalies and 

individually-variable breeding intervals. Inter-annual variability in nester abundance emerges as 

output in the model. To explore the model behavior and outputs, we subjected the virtual 

populations to sub-adult, adult, and nest disturbances and simulated the monitoring process of 

observing nesters and nests with error. We found that the GSTABM simulates population-level 

processes of nester abundance, and nester recruitment over time are within the bounds of 

observed values from Hawaii. The GSTABM outputs are most sensitive to changes in nearshore 

juveniles, sub-adult and adult survival rates. In simulating 100 years of recovery, populations 

began to increase but did not fully return to pre-disturbance levels in adult and nester abundance, 

population growth or nester recruitment. In simulated monitoring trials, adult abundance was 

poorly estimated, was influenced by population trajectory and impacts, and showed marginal 
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improvements with increased detection. Estimating recruitment showed improvements with 

increasing detection levels, and accuracy depended on the impact legacy. In the GSTABM, 

variability in the nest and nester counts did not always reflect variability in adult abundance, 

which translated into measurable uncertainty in assessing population size and trends from nesting 

beaches. The GSTABM is an important tool to determine relationships with monitoring, 

population assessment, and the underlying biological processes driving changes in the 

population, and especially, changes on the nesting beach. The ultimate purpose of the GSTABM 

is to be an operating model with which to evaluate optimal monitoring strategies for nesting 

beach surveys that will enhance accuracy of population assessments. 

 

3.1  INTRODUCTION 

 

The green sea turtle (Chelonia mydas) is a globally threatened species due primarily to 

over-exploitation, habitat loss and degradation, and disease (Seminoff 2011). Effective 

management depends on reliable monitoring of abundance indices and an understanding of the 

species’ population dynamics. For long-lived and highly migratory species like sea turtles, 

monitoring is usually only possible for discrete demographic groups over short spans of time 

when life stages are accessible and observation is possible, such as nesting females or nests 

during the breeding season. It is unclear how well indices based on beach surveys mirror the 

entire population. And, perhaps, our assessment of the status of these populations is flawed. 

Some populations of sea turtles are recovering, while many are not, despite intensive 

conservation measures (Wallace et al. 2011, NOAA & USFWS 2015). For example, counts of 

nesting females in the Hawaiian population of green sea turtles is estimated to be increasing at 

5.7% year
-1

, but the nest counts of the recovering Kemp’s ridley sea turtle (Lepidochelys kempii) 
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have experienced a recent rapid decline at the primary rookery in Mexico (Chaloupka et al. 2008, 

Caillouet 2014). When a change in the trend of an index of abundance occurs, particularly for a 

long-lived species, it can be difficult to ascertain the cause of the change or whether it reflects a 

change in unobservable components of the population (Heppell et al. 2003, Bjorndal et al. 2010).  

Cases of endangered species recovery are relatively rare and present a valuable 

opportunity to improve our understanding of the transient dynamics of increasing populations. 

Importantly, as a population recovers it is possible that the underlying relationships between the 

monitored demographic group and the rest of the population could be changing. For example, 

breeding probabilities can change as a function of the population size (Piacenza et al. In press). 

But if only certain demographic indicators or life stages are monitored, biologists may have no 

way to know that the underlying relationships are changing. Observer error, limited sampling 

windows, and nesting site ranges larger than the typical stretch of beach monitored insure that 

most sea turtle monitoring programs produce indices rather than true censuses (Gerrodette et al. 

1999, Jackson et al. 2008, Tucker 2010, Pfaller et al. 2013, Hart et al. 2013, Whiting et al. 2013). 

In addition, because we do not generally have population indices from other demographic groups 

in the population from which to compare or to confirm with nesting beach indices, biologists and 

managers are often ignorant of how misleading population trends based on nesting beach indices 

may be (Bjorndal et al. 2010).  

Population models are a critical tool in the effort to understand population dynamics and 

can give insight into unmonitored demographic groups and their status (Morris & Doak 2002). 

Demographic models for sea turtles typically make simplifying assumptions that females reach 

sexual maturity at the same age, breeding probability is constant for all individuals in a size/age 

class, and productivity is density independent. But, our understanding of sea turtle population 
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dynamics is complicated by intermittent breeding, a long lifespan, density-dependence and long 

demographic time lags (Parmenter & Limpus 1995, Bjorndal et al. 2000, Girondot et al. 2002, 

Heppell et al. 2003, Caut et al. 2006). For example, if green sea turtles mature at 40 years of age, 

as has been estimated (Balazs & Chaloupka 2004a), then any research following hatchlings to 

maturity transcends the length of most field studies. Although the range of many demographic 

variables has been estimated, only recently have biologists regularly attempted to incorporate 

that variability into population models (e.g., Chaloupka, 2002; Chaloupka and Balazs, 2007; 

Mazaris and Matsinos, 2006; Mazaris et al., 2006, 2005; Warden et al., 2015; Whiting et al., 

2013). Worse yet, some parameters may be trend coefficients rather than moments of simple 

distributions (Solow et al. 2002). Female green sea turtles are obligate skip-nesters (i.e. take at 

least two years to breed again; Miller 1997) and  breeding probability may be highly variable 

(Piacenza et al. In press). Breeding probability, which is often calculated as “remigration 

interval” based on the number of years between sightings of tagged individuals, has been tied to 

environmental conditions for green turtles (Solow et al. 2002), leatherbacks (Rivalan et al. 2005, 

Saba et al. 2007), and loggerheads (Broderick et al. 2001, 2003). Differences in physiology and 

the influence of the environment result in individual variability in remigration intervals 

(Chaloupka & Limpus 1996, Miller 1997, Limpus & Chaloupka 1997, Solow et al. 2002, 

Broderick et al. 2003, Stokes et al. 2014). By accounting for individual variability in life history 

traits, deviations in population dynamics emerge which are in contrast to results produced by 

traditional modelling approaches (DeAngelis & Mooij 2005). In addition, individual variability, 

can be especially important during disturbance and recovery, as outliers (e.g., highly fecund 

individuals) can be important to population resilience and recovery. Accounting for individual 

variability in life histories in our models could improve our assessment of overall population 
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variability, improve the accuracy of status determinations, and result in more realistic for 

population recovery times.  

One way to address these variation-related issues is through the use of agent-based 

models (ABMs; also referred to as Individual Based Models, IBMs; Railsback and Grimm, 

2012). ABMs have the flexibility to incorporate more complex mechanisms, such as individual 

variability in life history traits and density dependence. ABMs can simulate individual behaviors 

and therefore operate at the scale by which population dynamics are based and at which 

monitoring occurs (Lomnicki 1988, Letcher et al. 1998, DeAngelis & Mooij 2005). ABMs have 

previously been applied to sea turtles to examine the influence of temporal variability and age-

dependent mortality on population dynamics, to measure population viability and to test different 

monitoring schemes for within season sampling (Mazaris et al. 2005, 2006, Mazaris and 

Matsinos 2006, Whiting et al. 2013). In addition, ABMs provide a platform with which to 

perform disturbance experiments and to simulate the process of population monitoring. As 

ABMs use a bottom up modeling approach, rather than aggregate-level equations, population 

dynamics emerge due to events and behaviors of the individuals (Grimm & Railsback 2005, 

Semeniuk et al. 2012). By addressing these issues, ABMs can give more biologically realistic 

predictions and better estimates of variability and uncertainty, and allow biologists to enhance 

understanding of the dynamics of population recovery and the relationships between population 

indices and the entire population (Semeniuk et al. 2011).  

We created our green sea turtle ABM (GSTABM) to simulate green sea turtle population 

dynamics, population disturbance and recovery, and to simulate the processes of monitoring and 

population assessment. Our primary goal in creating the GSTABM was to let our questions and 

the basic principles of green sea turtle life history dictate the model design. Specifically, we 
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wanted to allow individual variability in life history traits, i.e. breeding periodicity, age-at-

maturity, clutch frequency, and clutch size, and to create mechanisms for density-dependence 

and the influence of environmental variability on reproduction. We simulate anthropogenic 

disturbance to populations and observe the associated transient dynamics as they affect multiple 

indices of abundance. Ultimately, we wanted to contrast the recovery dynamics of populations 

subjected to different kinds of disturbance histories. We had three main research questions: (1) 

Can the GSTABM adequately reproduce the dynamics of green sea turtle populations? (2) How 

do the recovery dynamics differ when the disturbance occurs to different demographic groups 

(e.g., older turtles and eggs), and 3) What predictions can we make from the GSTABM regarding 

recovery dynamics of green sea turtles? 

 

1.1 Biological Background 

The model is parameterized to simulate the Hawaiian population of green sea turtles, 

where long-term data have been collected (Piacenza et al. In review, Balazs and Chaloupka, 

2004; Balazs, 1980; Balazs et al., 2015; Dizon and Balazs, 1982; Niethammer et al., 1997; 

Nurzia Humburg and Balazs, 2014; Tiwari et al., 2010; Van Houtan et al., 2014), but could 

easily be modified to represent other sea turtle populations and species, and other endangered 

and recovering species. In the archipelago, the vast majority of nesting takes place in the 

Northwestern Hawaiian Islands (NWHI) and the largest rookery is at East Island, French Frigate 

Shoals, a small atoll (~0.036 km
2
), where approximately 50% of Hawaiian nesting occurs 

(Balazs 1980, Balazs & Chaloupka 2004a). Females generally will not nest in the year 

immediately following a nesting year (i.e. obligate skip-nesting) and vary in the number of years 

between nesting seasons (Piacenza et al. In review, Broderick et al., 2003; Stokes et al., 2014). 
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Energetics, physiology, and environmental conditions all appear to influence the length of the 

breeding, or remigration, interval (Chaloupka & Limpus 1996, Miller 1997, Limpus & 

Chaloupka 1997, Solow et al. 2002). Within a nesting season, green turtles will return several 

times to lay an average of four clutches at approximately 2 week intervals (Tiwari et al. 2010, 

Piacenza et al. In review).  

Historically, green sea turtles were abundant and nested throughout the entire Hawaiian 

Islands chain (Kittinger et al. 2013). In recent history, harvest occurred on larger juveniles, sub-

adults and adults, with progressively more pressure on larger individuals as the fishery 

developed, and there was little to no egg harvest (although episodic egg harvest in the NWHI 

may have occurred;  Balazs, 1980; Kittinger et al., 2013; Van Houtan and Kittinger, 2014). Prior 

to European colonization in the early 1800s, green sea turtle populations are thought to have 

been minimally disturbed in the Hawaiian archipelago due to a variety of factors, as harvest was 

tightly regulated by the “kapu” system of native Hawaiians (Balazs 1980). In the 20th century, 

numbers of green sea turtles dropped precipitously as harvest intensified and became more 

commercialized in the Hawaiian Islands (Balazs 1980, Witzell 1994, Van Houtan & Kittinger 

2014). In 1978, green sea turtles were placed on the endangered species list and harvest was 

prohibited (NOAA Office of Protected Resources 2014).  

 

3.2 METHODS AND MODEL DESCRIPTION 

 

The model description follows the ODD (overview, design concepts, details) format for 

describing agent-based models (Grimm et al. 2006, 2010). We implemented the model in 

NetLogo 5.1.0 (Wilensky 1999) and the program code is available in Appendix B. We simulated 

the population dynamics of green sea turtles in Hawaii based on known life history information.  
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Purpose 

The GSTABM was developed to evaluate the influence of observation error (e.g., in 

monitoring) on perceived population status and ultimately on status determinations based on 

monitoring of nesting females and nests. The model was designed to simulate the dynamics of 

sea turtle populations that are (1) at equilibrium (e.g., stable, unperturbed state), (2) undergoing 

decline due to increased loss of individuals via anthropogenic and natural impacts, e.g., harvest, 

bycatch, environmental change, or (3) are recovering from such impacts so that populations are 

increasing (Fig. 3.1). As such, one of the main goals was to capture the transient dynamics of 

green sea turtle populations following perturbation. In addition, this model was developed as an 

operating model to be used in a modified Management Strategy Evaluation framework (Smith et 

al., 1999, Piacenza et al. In prep.).  

Entities, state variables and scales 

The model entities are individual female green sea turtles of different age classes 

(hatchlings (year 1), pelagic juveniles (years 2-3), neritic juveniles (years 4-11), sub-adults 

(years 12 to age-at-maturity), neophytes (year of age-at-maturity), adults (post maturity)). The 

state variables are age, demographic stage, age-at-maturity, clutch frequency, clutch size, 

reproductive status (nester or non-nester), hatchling production, remigration interval, and 

lifetime nesting migrations (Table 1). The life history traits of age-at-maturity, clutch frequency 

and clutch size vary across individuals, are assigned at birth, stochastic, and based on empirical 

data (Table 2). We assume a 50/50 sex ratio for each clutch (Balazs 1980, Niethammer et al. 

1997). Breeding probability is stochastic and varies annually (Fig. 3.2B). Age-at-maturity is 

variable across individuals, so that stage lengths for sub-adults vary individually (Fig. 3.2A). 
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Realized hatchling production (HP) is density-dependent and is based on a Ricker type function 

(Fig. 3.2C; Jennings et al., 2001).  

The temporal scale of the model progresses with annual time steps. The model 

incorporates environmental variation by including a climate variable that influences breeding 

probability (Fig. 3.2D; Solow et al., 2002). The model includes several agent-sets: age classes, 

reproductive state (nester or non-nester), monitored nesters, and monitored nests.  

Process overview and scheduling 

With each time step, individual turtles grow older, survive, are exposed to risk of 

environmental/anthropogenic impacts (at certain time periods), reproduce, and may be monitored 

when nesting (Fig. 3.1). Model entities are processed in a randomized order and changes in state 

variables are updated immediately. The number of nesters is updated after nesting takes place 

and before the monitoring sub-model proceeds.  

Update age class 

 Sea turtles age and proceed to the next age class if they survive. Age class designates 

which life stage each individual is part of for the year, i.e., hatchling, pelagic juvenile, neritic 

juvenile, sub-adult, neophyte, or adult (Mazaris et al. 2005, Van Houtan et al. 2014). 

Survival   

Survival is dependent on the age class of the individual (Table 3.2). 

Update removal status – nests and older individuals 

 Additional mortality from anthropogenic or natural impacts can occur through random 

removals of individuals. This step determines which individuals (sub-adults and adults or eggs) 

are removed from the population in addition to natural mortality.  

Choose nesters 
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 This step determines if an adult is a non-nester or nester for the time step.  

Hatchling production  

 The function calculates the number of hatchlings produced by a nester, based on the 

individual’s clutch size and clutch frequency and current population density.  

Produce Hatchlings 

 This step produces the new offspring for each individual and includes all eggs produced 

across clutches.  

Monitoring nesters and nests 

 This step determines which nesters and nests are sampled during nesting beach 

monitoring and become part of the Monitored Nesters and Monitored Nests agent-sets.  

Design concepts 

Basic Principles 

How populations recover and the variability associated with reproduction, both at the 

individual and population levels, along with the influence of the environment, is of fundamental 

importance to understanding the trajectories towards recovery and the time spans involved 

(Lotze et al. 2011, Kuparinen & Hutchings 2012, Hutchings, Butchart, et al. 2012, Kuparinen et 

al. 2014). We used a bottom up modeling approach based on the first principles of life history 

(Grimm et al. 2005, Wilensky & Rand 2015). One goal was to keep the model simple enough 

that we could minimize the number of unknown parameters that would require internal 

calibration (Grimm et al. 2005).  

Emergence 

The annual population size, abundance of nesters, population growth rate (λ = Nt+1/ Nt, 

where Nt+1 is the population size at time t+1), age distribution, and nester recruitment (defined as 
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the proportion of first-time breeders, i.e. neophytes, in the nester population) emerge from 

demographic processes. While individual demographic traits are dictated by the distributions of 

the input parameters, the population level mean demographic rates (e.g., remigration interval, 

clutch frequency, clutch size, age-at-maturity, and hatchling production) are emergent variables 

as well.  

Stochasticity 

 We incorporate stochasticity into many model elements to represent natural variability 

(Table 3.2). Individual turtle survival is randomly assigned each year from life stage-dependent 

distributions. Age-at-maturity, clutch frequency, and clutch size, is drawn randomly from a 

Poisson distribution (Table 3.2). The threshold for breeding probability varies annually and is 

drawn randomly from a truncated gamma distribution (range 0-1; Fig. 3.2B). In addition, a 

climate condition parameter simulates poor climate conditions that reduce breeding probability, 

such as in an extreme El Nino year. Poor climate conditions in the GSTABM occur ~10 years on 

average and reduce breeding probability by 25% (Fig. 3.2D). For adults eligible to nest in a 

given year (not immediately following a nesting year), nester status is selected based on a 

random number draw (between 0 – 1) against the breeding probability threshold. During the time 

periods where anthropogenic mortality is in effect, turtles are randomly chosen to be removed 

from the population. Detection probability is randomly drawn from a logit-normal distribution. 

Nesters and nests are randomly selected to be part of the monitoring agent-set.  

Observation 

The model automatically collects data on individuals and population-level parameters by 

year. The data include population size, age structure, number of nesters, number of nests, number 

of turtles removed due to anthropogenic/natural impacts, nester recruitment, and annual breeding 
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probability. In addition, population level means and standard deviations of hatchlings produced 

female
-1

, remigration interval, age-at-maturity, clutch frequency, clutch size, and total number of 

lifetime nesting seasons for each time-step are collected.  

Initialization 

The initial conditions for abundance and population structure were based on the stable 

age distribution generated from an age-structured projection matrix model using parameters in 

Table 3.1. Initial abundance of stage classes is presented in Table 3.3. To decrease model run 

times and the amount of time to reach quasi-stability, the abundance of hatchlings and pelagic 

juveniles are modelled as super-individuals by the use a scaling factor (Table 3.2). The scaling 

factor was calculated by dividing the number of female eggs produced per capita by the 

survivorship to the first year of the neritic juvenile age class (Scheffer et al. 1995). Turtles are 

initialized with their randomly drawn life history traits (age-at-maturity, clutch frequency, and 

clutch size). We set the initial carrying capacity for the nesting beach based on preliminary 

model runs that suggested the best accordance of the model output to observed data from the 

Hawaiian green turtle population. The nester carrying capacity parameter is only used in the 

function to calculate the hatchling production per nester in a nesting season.  

Input data 

The current version of the model does not include input data.  

Sub-models 

Update age class 

 Each time step the age of individual sea turtles is advanced by one year and the individual 

may proceed to the next age class. Ages included in each life stage were based on those in Van 

Houtan et al. (2014; Table 3.2). To set age-at-maturity, we used the median age-at-maturity from 
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multiple studies of Hawaiian turtles as the mean age-at-maturity in the GSTABM (Table 3.1; 

Balazs and Chaloupka, 2004; Van Houtan et al., 2014; Zug et al., 2002).  

Survival   

Survival is dependent on the age class of the individual. The adult female survival rate is 

based on a mark-recapture analysis, which used 29 years of tagging data (Piacenza et al. In 

review). For the other age classes (hatchling – sub-adult), we use survival rates estimated in Van 

Houtan et al. (2014), which are based on a deterministic projection matrix model fit to observed 

data. We model the survival rates as having a constant mean within each life stage (Table 3.2). 

Individual survival is based on random draws against the survival threshold for each age class 

and results in demographic stochasticity. We set the maximum age to be 85 years old, based on 

estimates of age-at-maturity and reproductive longevity (Zug et al. 2002, Chaloupka et al. 2004, 

Nurzia Humburg & Balazs 2014, Van Houtan et al. 2014).  

Removals 

During the period in which anthropogenic impacts can occur (50 years after the model 

reached equilibrium), sub-adults and adults are randomly removed from the population to 

simulate a population decline: 

 t t tTR SA A F     (2.1) 

where TRt = total removed t, SAt = sub-adults and At = adults in a given time step t, and F = 

removal rate. After the impact period is over, the removals sub-model no longer removes turtles 

from the population. A similar function is used to remove nests, except the total number of 

hatchlings produced is used in the numerator (Hatchlingst). To remove separate age classes, 

separate calculations were made, with specific impact rates for both Nests and Age 11+ 

individuals. In the base removal setting, 6.67% of sub-adults and adults were removed annually 
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for 50 years (Table 3.2). For the nest removals, 50% of nests were removed annually for 50 

years. For nest and Age 11+ (sub-adults and adults), 25% of nests and 3.33% of Age 11+ were 

removed.  

Choose nesters 

 This step calculates if the individual sea turtle is eligible to breed in the current year, 

based on if she bred the year before. If the individual did not breed the previous year, she is 

eligible in the current time step. Breeding is based on a random draw (0 – 1) against the breeding 

probability threshold. If the random draw is < Breeding Probability, then the individual is a 

nester that year. 

Hatchling production – super-individuals 

Hatchling production is represented as a function of an individual’s assigned clutch size 

and clutch frequency, and a density-dependent term (based on a Ricker type density dependent 

equation): 

 
( (1 ( ))
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tHP CS CF e


   (2.2) 

where HPt= hatchling production at time t, CS = clutch size, CF = clutch frequency, r = intrinsic 

rate of increase, Nesterst = total number of nesters in the current time step, and Knesters = the 

carrying capacity for hatchling production based on the number of nesters present in a year (Fig. 

3.2C). We used a Ricker type function because studies have shown decreased numbers of viable 

nests and hatchlings with high numbers of nesters or nests (Girondot et al. 2002, Caut et al. 

2006). As no empirical data on the form of density dependence of hatchling production exists, 

the intrinsic rate of increase, r, was fit internally to the model so as to achieve an asymptotic 

relationship of hatchling production for green sea turtles (Fig. 3.2C). Empirical evidence 

supports density dependence in egg and hatchling production, and it can be exerted through 
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several different mechanisms, including intraspecific nest destruction, intraspecific competition 

for food influencing a female’s fecundity, yolk stores, egg viability, and increased egg and 

hatchling predation (Girondot et al. 2002, Tiwari et al. 2006, 2010, Caut et al. 2006, Ocana et al. 

2012).  

We represent the hatchlings produced as super-individuals to reduce model run times 

(Scheffer et al. 1995). A super-individual encompasses a portion of a female’s hatchling 

production, and a female produces, on average, 8 super-individual hatchlings season
-1

 equivalent 

to ~ 64 female hatchlings. We scaled super-individuals to the number of hatchlings that would 

survive to the neritic juvenile stage (age 4) based on life table analysis  (Scheffer et al. 1995).  

Monitoring 

We developed a monitoring sub-model to simulate population monitoring on the nesting 

beach. The detection probability, p, is a random variable drawn from a logit-normal distribution. 

We scale the standard deviation of detection so that it is proportional to the mean input value. 

We based the standard deviation on the coefficient of variation (CV = 0.2) of observed detection 

probabilities in a long-term mark-recapture study of Hawaiian green turtles (Fig. 3.3; Piacenza et 

al. In review). We experimented with 3 different mean detection levels: 0.1, 0.5, and 0.9. The 

detection probabilities represent the proportion of all nesters in a population that are being 

monitored, and not at a single rookery. After nesting has occurred, the number of nesters is 

summed and the total number of monitored nesters is p∙Nesterst (Fig. 3.1). The monitored nesters 

agent-set is a random selection of all nesters in a given time step. Since nesters lay more than one 

clutch of eggs per season, a similar routine was followed to conduct monitoring on nests. The 

GSTABM collects data from the monitored-nesters agent-set similar to output data collected on 

the population as a whole, including: observed nester abundance, observed nest abundance, 
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observed nester recruitment, as well as data on the observed population level means and standard 

deviations of hatchlings produced female
-1

, remigration interval, age-at-maturity, clutch 

frequency, clutch size, and total number of lifetime nesting seasons.  

Population assessment 

To simulate population assessment, we estimate the total number of adults from observed 

nesters, while assuming constant breeding probability and detection probability, such that: 

 
.

, .
ˆ tObs Nesters

t obs nesters BP p
A    (2.3) 

where Ât, obs. nesters= estimated number of adults at time t based on the observed nesters, BP = 

breeding probability and p = detection probability. We followed a similar routine to estimate the 

total number of adults from observed nests, while assuming constant breeding probability, clutch 

frequency and detection probability: 

 
.

 
, .

ˆ tObs Nests

t obs nests BP CF p
A    (2.4) 

 

where Ât, obs. nests= estimated number of adults at time t based on the observed nests, and CF = 

clutch frequency. For the purposes of population assessment, we assume that BP, p, and CF 

could be estimate accurately from field data. The assumed constant estimates were BP = 0.25 

and CF = 4, and the p = mean detection treatment level (p= 0.1, 0.5, or 0.9). The estimated 

number of adults from observed nesters or observed nests was compared to the true number of 

adults to determine the level of accuracy associated with the varying detection probabilities. To 

maintain equal sample sizes for the three impact phases, we randomly selected 25 time-steps 

(within each replicate model run) from the impact and recovery phases (which both included >25 

years), and the stable phase was composed of the first 25 years post-model initialization.  
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Model analysis and simulations 

To determine the adequate sample size for analysis of the baseline model and each input 

parameter setting, we used an approach that employs the cumulative coefficient of variation 

(CV) over a running number of replicates to determine when adequate sampling is achieved 

(Cowled et al. 2012). We analyzed the CV for the four main response variables of adult 

abundance, nester abundance, the discrete population growth rate, and nester recruitment. The 

model was allowed to reach equilibrium at 175 time steps (before which all output data are 

discarded), and the model was allowed to run to 350 time steps. The model has three main 

population trajectory phases: stable population (years 175 – 199), impact phase (years 200 – 

250), and the recovery phase (251 – 350).  

The age structure of the five age classes (hatchling, pelagic juvenile, neritic juvenile, sub-

adult and adult and neophyte) was examined to determine if the proportion of individuals in each 

age class was realistic, given previous age-structured models for sea turtles (Crouse et al. 1987, 

Crowder et al. 1994, Heppell et al. 1996, 2000, Casale & Heppell 2016). We included four main 

emergent output parameters to focus our analysis on: adult abundance, nester abundance, discrete 

annual population growth, and nester recruitment. These parameters were not controlled for in 

the input parameters for individuals or model coding, and thus should emerge on a higher 

(population) level of organization as a result of the interactions of individual female green sea 

turtles (Breckling et al. 2005). We compared the means and 95% confidence intervals (95% CI)  

of nester abundance and nester recruitment to empirical data from the Hawaiian population of 

green sea turtles as a way to “ground truth” the model performance (Grimm et al. 2005). All 

model outputs were evaluated including the four main emergent variables, and the population-
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level life history traits (i.e. hatchlings produced per female, remigration interval, age-at-maturity, 

clutch frequency, clutch size, hatchling production, and total number of lifetime nesting seasons). 

Sensitivity analysis  

We conducted a local one-at-a-time sensitivity analysis of 12 input parameters (Table 

3.2) on the main response variables: adult abundance, nester abundance, discrete annual 

population growth, and nester recruitment (Table 3.1). Since ABMs are stochastic, and outputs 

vary with each simulation run, we assessed model sensitivity using an approach that incorporates 

the shape of the distribution of the output response variables, which is based on the t-statistic 

(Bar Massada & Carmel 2008). Sensitivity (St) was calculated as:   
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where Ῡalt is the mean of the response variable generated with an alternate input parameter and 

Ῡref is the mean of the response variable generated from the baseline input parameter, palt and pref 

are the alternant and reference parameter values, respectively, and s
2

alt and s
2

ref are the standard 

deviations of the two distributions. For constant input parameters, we varied the mean input by 

+/- 5%. For stochastic input parameters, we varied the mean input by +/- 5% (for values that 

were integers, we selected the next value below and above), and the biological extremes of the 

parameters, based on reports in the literature (Table 3.2).  

 

3.3 RESULTS 

 

Model stabilization 
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The CV decreased and stabilized after 30 replicate runs, at the most, for the four primary 

response variables (i.e. adult abundance, nester abundance, discrete population growth, and 

nester recruitment; Fig. 3.4). We conducted 50 replicate runs per simulation for baseline 

simulations and the sensitivity analysis to capture the range of model outputs.  

We discarded the first 175 years of each model run, during which the GSTABM 

initialized. Most runs generally became quasi-stable after ~85 years, but we included roughly 

one extra generation time to buffer against potential delays in equilibration. We compared output 

variables across 175 years (post-model initialization), during which populations were subjected 

to a 50 year impact, where 6.67% of sub-adults and adults, 50% of nests, or 3.33% of sub-adults 

and adults and 25% of nests were removed annually, simulating anthropogenic disturbance of 

green sea turtle populations (i.e. harvest, bycatch, physical injuries), and the subsequent recovery 

phase post-impact.  

Life history traits 

At time-step 350, the average number of female eggs produced for each clutch was 43.2 

(SD = 15.3), transformed back from the scaled super-individuals (see Hatchling production – 

super-individuals), and the average clutch frequency was 4.0 (SD = 2.00; Fig. 3.5A and B). The 

average remigration interval was 3.4 (SD = 2.72; Fig. 3.5D). The average total number of female 

hatchlings produced (across clutches laid in a season) was 92.9 (SD = 64.1), transformed back 

from the scaled super-individuals. The average age-at-maturity was 28.6 (SD = 3.1; Fig. 3.5C). 

All of the stochastic input parameters for reproduction correspond to the empirical data on green 

sea turtle reproduction (Table 3.2). As these inputs were imposed in the model structure, this is 

not surprising, yet is also a good check that the model was performing as intended. The average 

annual breeding probability was 0.234 (SD = 0.1087), and the realized breeding probability 
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(calculated as the ratio of nesters and adults) was 0.239 (SD = 0.0768). As the model 

automatically does not allow turtles to re-nest the year following nesting (since green sea turtles 

are obligate one year non-nesters), the realized breeding probability tends to be slightly greater, 

albeit within the range of the standard deviations. The average number of breeding remigrations 

in an adult female turtle’s reproductive lifetime was 3.2 (SD = 2. 3), and the maximum lifetime 

nesting migrations of any individual across all replicate model runs was 32.  

Population size, nesting abundance and age structure 

 The mean population size at time-step 350 across 50 replicate runs was 375,437 (SD = 

8,602). The pelagic juveniles (ages 1 – 3) were the most abundant stage class (back-transformed 

from super-individuals) and adults were the least abundant stage class (Fig. 3.6). The average 

adult population was 9,912 females (SD = 311), and the average number of nesters was 2,370 

(SD = 756) at time-step 350. Variability in the abundance of age classes was greatest for the 

youngest age classes (pelagic juveniles SD = 22,614, hatchlings SD = 14,343) and least for 

adults (SD = 311). Populations tended to be stable, and did not go extinct, over the entire model 

run if the removals sub-model was turned off.  

Adult abundance showed little variability during the stable population periods, declined 

during the impact phase and began to recover after the impact ceased (Fig. 3.7A), with a time 

lag. While no data exist on the total adult population size for Hawaiian green turtles, we 

compared the estimated number of females nesting to the simulated nester abundance (Fig. 

3.7B). We assumed 50% of nesting in Hawaii occurs at the primary rookery at East Island, 

French Frigate Shoals (Balazs 1980, Nurzia Humburg & Balazs 2014). In Hawaii, nester 

monitoring began in 1973, and green sea turtles were listed as an endangered species and harvest 

was prohibited in 1978 (NOAA Office of Protected Resources 2014). We scaled the Hawaii 
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time-series to 5 years prior to the cessation of harvest in the model (e.g., 1973 = Year 245 in the 

GSTABM). With an impact rate of 6.67% of sub-adults and adults, the model predicts a slightly 

higher mean nester population at the beginning of the impact phase (Year 250) and then 

subsequently lower mean population sizes during the recovery phase. However, individual model 

run variability is in accordance with the observed inter-annual nester variability in Hawaii 

(Figure 7B). Indeed, most of the Hawaii nester time-series falls within the bounds of the 95% 

confidence interval of the GSTABM, and suggests a good model fit to the observed data.  

Population growth rate  

After the initialization stage, the discrete annual population growth rate (λ) was close to λ 

= 1.00 (SD = 0.0037) (Fig. 3.7C). During the harvest phase, population growth initially 

decreased to λ = 0.94 (SD = 0.013), and then increased slightly and appeared to reach dynamic 

stability at λ = 0.97 (SD = 0.012). During the recovery phase, λ initially increased to λ = 1.046 

(SD = 0.013), and displayed dampening oscillations with a mean of λ = 1.017 (SD = 0.011) 

towards the end of the model runs.  

Nester recruitment – proportion of neophytes 

 During the initial stable phase of the model runs, nester recruitment (proportion of 

neophytes, females nesting for the first time) stabilized at about 0.331 (SD = 0.110) each year 

(Fig. 3.7D). During the impact phase, nester recruitment displayed a lag in a response after 10-15 

years of the impact, and reached a mean maximum of 0.437 (SD = 0.117), in Years 226 -250. 

Recruitment began to decrease during the later years of the impact phase, and reached a mean 

local minimum of 0.429 (SD =0.116), in years 240 – 249, and then increased again during the 

initial recovery phase. Oscillations in nester recruitment continue during the recovery phase, and 

appeared to approach the undisturbed recruitment rate towards the end of the model runs.  
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 While no data on nester recruitment exists per se for green sea turtles in Hawaii, there is 

an estimate of the percent of newly tagged turtles out of total nesters (mean = 49%, standard 

deviation = 14; Nurzia Humburg and Balazs, 2014). Assuming tagging saturation of adult 

females, newly tagged turtles may be used as a proxy for proportion of neophytes. However, 

evidence suggests that the assumption of saturation tagging is specious (Piacenza et al. In 

review), and should be treated with caution. The observed estimate of Hawaiian nester 

recruitment falls within the bounds of the 95% CI for the GSTABM and suggests a good model 

fit to the observed data (Fig. 3.7D).  

Population impact and recovery 

  During years 200 – 250, we simulated a harvest impact in which sub-adults and adults, 

nests, or nests, sub-adults, and adults were removed from the population, in addition to the 

natural mortality. For sub-adult and adult impacts during the impact phase, the adult population 

decreased to an average minimum of 3,760 (SD = 2,686) adults and 950 (SD = 745) nesters (Fig. 

3.8A & B). In the last ten years of the recovery phase, the average adult population was 9,637 

(SD = 402), and the average number of nesters was 2,407 (SD = 806). Oscillations in the adult 

population are apparent during the recovery phase (Figs. 3.6 and 3.7A). Nesting is naturally more 

variable than the adult population because of the innate breeding periodicity of green sea turtles. 

However, similar oscillatory patterns during recovery are apparent in the nester abundance time-

series (Fig. 3.7B). In general, the output variables did not achieve complete recovery to pre-

impact levels in the 100 years of recovery after the cessation of the 50 year impact phase. 

 In general, when nests were disturbed, either alone or in conjunction with sub-adult and 

adult impacts, the response variables showed different patterns during the impact and recovery 

phases when compared to the sub-adult and adult harvest scenario. When 50% of nests were 
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harvested, there was a delayed response in the four main response variables (Fig. 3.8). The mean 

number of nesters during the 50 year impact phase was higher (mean nesters = 2,303 and SD = 

1153), and during the first 100 years of the recovery the average number of nesters was lower 

than during the impact phase (mean nesters = 1,551 and SD = 811). There were substantial time 

lags in the recovery phase, where the four main emergent variables did not show signs of 

recovery for at least the first 25 years of the recovery phase (Fig. 3.8).  

 When nests, sub-adults, and adults were disturbed, simulating nest and Age 11+ harvest, 

the recovery rate was slower and nester abundance during the impact phase was larger and had 

greater variability (mean nesters = 1,435, SD = 841) compared to sub-adult and adult only 

impacts, which was not unexpected considering that a larger proportion of the population was 

disturbed (Fig. 3.9). However, the pattern of the discrete population growth rate and nester 

recruitment showed interesting changes. When hatchlings, sub-adults and adults were disturbed, 

the population growth rate had a muted response during the impact phase, neither dipping as low 

nor showing as large of an increase, relative to the other impact types, and the height of the 

oscillations was smaller during the recovery phase (Fig. 3.9C). For nester recruitment, there was 

a much longer lag, and did not show as big of an increase during the impact phase, and the height 

of the oscillations during the recovery phase was lower (Fig. 3.9D). For all cases of impacts, 

none of the four response variables indicated a complete recovery to pre-impact levels in the 100 

years following the end of the impact phase. 

Population monitoring 

Estimating adult population from observed nesters and nests 

 We compared population level indices from the known adults and observed nesters or 

observed nests. Estimates of adult abundance drawn from observed nesters and nests differed 
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substantially from the true total number of adults, and the accuracy of the estimate did not 

greatly increase with detection probability (Fig. 3.10). The accuracy improved marginally with 

increasing detection probability, but was rarely a precise estimate. In general, there were more 

incidences of over-estimates than under-estimates, except during the stable population trajectory. 

The accuracy in the population estimate also depended on the underlying population trajectory 

(i.e. stable, impact or recovery phases), and the largest under-estimates occurred during the 

stable phase.  

 The impact legacy, in which certain age classes were disturbed, had an influence on the 

accuracy and bias of the adult abundance estimation (Figs. 3.10, 3.11, 3.12). For example, there 

was a greater chance of underestimating the adult population size if the impact legacy only 

included nests (Fig. 3.11) compared to disturbances to nests, sub-adults and adults (Fig. 3.12).  

 Estimating Nester Recruitment from Observed Nesters 

 Estimating the nester recruitment (proportion of neophytes) from observed nesters 

showed improved accuracy with increasing detection probability (Fig. 3.13 A-C), and the gains 

in accuracy where greater compared to estimating adult abundance. When only sub-adults and 

adults were disturbed, the overall variability in estimated nester recruitment slightly greater, 

compared to nest impacts and nest, sub-adult and adult impacts. The worst errors in estimated 

proportion of neophytes tend to occur during the recovery and impact population trajectories.  

Sensitivity Analysis 

The GSTABM response variables were most sensitive to neritic juvenile, sub-adult and 

adult survival rates (Table S1). Given the wealth of study of sea turtle survival rates in projection 

matrix models, this result was not surprising (Crouse et al. 1987, Crowder et al. 1994, Heppell et 

al. 2000). Adult abundance was most sensitive to a 5 % increase in adult survival rate, followed 
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by a 5% decrease in sub-adult survival rate. Nester abundance was most sensitive to 5% decrease 

and 5% increase in the sub-adult survival rate. Nester recruitment was most sensitive to a 5% 

decrease in adult survival rate, followed but a 5% increase in adult survival rate. The discrete 

population growth rate was most sensitive to a 5% decrease in adult survival rate and neritic 

juvenile survival. Interestingly, there were some unsymmetrical results across the perturbation 

range. For example, discrete population growth rate was most sensitive to a 5% increase in adult 

survival rate, but only had a moderate sensitivity to a 5% decrease in the adult survival rate. 

Stochastic input variables were also subjected to a sensitivity analysis across the biological 

extremes, but none of these had as big of an impact on the output variables as the survival rates.  

 

3.4 DISCUSSION 

 

The GSTABM was developed to address management concerns of recovery dynamics, 

monitoring strategies and population assessments. In this model, we introduced a novel way to 

represent breeding periodicity in ABMs, which is stochastic and varies annually, and allows for 

more biological realism in representing green sea turtle breeding dynamics. In addition, breeding 

is influenced by climate anomalies (i.e. extreme El Nino events). This climate parameter could 

be adapted for sequential change over time to simulate the influence of climate change (e.g., 

where increasing frequency of harsh climatic conditions decrease breeding probability). Age-at-

maturity, clutch frequency and clutch size were also variable across individuals. Based on 

comparisons to empirical data, our model matches observed patterns of population dynamics, in 

particular inter-annual variability in nester abundance and nester recruitment. The model can be 

modified for other sea turtle species and serve as an underlying “operating model” for simulation 
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analyses to evaluate management and monitoring strategies (Piacenza et al. in prep and Chapter 

4). 

 Our GSTABM builds on of previous sea turtle ABMs. Mazaris et al. (2005) introduced 

an ABM for Mediterranean loggerhead sea turtles that uses “super-individuals” throughout all 

life stages to improve model run times. Later ABM versions included a parameterization for 

green sea turtles, and examined the influence of environmental variability and age-dependent 

mortality, respectively (Mazaris & Matsinos 2006, Mazaris et al. 2006). Similar to those authors, 

we employed super-individuals to represent the earliest pelagic life stages. Interestingly, Mazaris 

et al. (2005) found that the probability of persistence (i.e. extinction risk) depends most on 

fecundity and survival rate of the youngest life stages, which is counter to many other sea turtle 

demographic studies (Crouse et al. 1987, Crowder et al. 1994, Heppell et al. 1996, Heppell 

1998). The authors suggest that stochastic events and individual variability in their ABM could 

explain this difference in results. Mazaris and Matsinos (2006) included density dependence, 

where the high abundance of immature and mature turtles results in a reduction in somatic 

growth and reproduction. This form of density dependence increased extinction risk in their 

simulation experiments. While the work of Crouse et al. (1987), Crowder et al. (1994) and 

Heppell et al. (1996,1998) suggested that changes in survival rates of large juvenile and sub-

adult sea turtles would have the biggest proportional effect on population growth, and indeed the 

GSTABM is most sensitive to those survival rates, our model shows that when nest impacts 

occur, either alone or in conjunction with adult removals, important time lags occur in abundance 

and nester recruitment which can obscure the accuracy of population assessments. Overall, 

ABMs for sea turtles reveal unexpected patterns and relationships that may be obscured in other 

modeling frameworks. 
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 It is clear from our results that variability at the nesting beach does not reflect variability 

in adult populations of green sea turtles, and even less so the total population variability. Our 

finding is supported by suggestions from sea turtle working groups and statisticians that have 

evaluated nesting beach trends (Magnuson et al. 1990, Gerrodette et al. 1999, Bjorndal et al. 

1999, 2010, Hays 2000, Chaloupka 2001, 2002, Solow et al. 2002, Heppell et al. 2003, Turtle 

Expert Working Group 2007, 2009, Chaloupka & Balazs 2007). Nester abundance tends to 

mirror the adult trends during the impact and recovery phases, but the magnitude of variability is 

much greater, which translates into much greater uncertainty in assessing population size and 

trends. Population estimates drawn from observed nesters and nests may obscure true population 

trends and uncertainty in the estimates could yield either overly pessimistic (higher extinction 

risk) or optimistic (recovery targets met prematurely) conclusions, particularly when nesting 

frequency is stochastic or cyclical. Surprisingly, increasing detection from 10% to 90% of 

nesters did little to improve accuracy of estimated adults. As monitoring nesting beaches is an 

imperfect mirror of the true adult trend, increasing detection only results in modest gains in 

accuracy when using nesting beach data to estimate adult abundance. Nester recruitment, on the 

other hand, did show improvements in accuracy with increasing detection. The worst 

conservation error is to conclude that a population is faring well, when in fact is it declining 

(Taylor & Gerrodette 1993); however, under-estimating population size can cause undue 

restrictions on stakeholders, such as overly restrictive bycatch limits. Care should be exercised 

when using data from sea turtle nesting monitoring programs to assess adult abundance, without 

any other population indicators, such as nester recruitment, breeding probability changes, and 

size-distributions over time.  
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 In our GSTABM, the accuracy of estimating nester recruitment depends on the 

underlying impact history (and subsequent alterations in age structure). This is concerning, given 

the importance of this vital rate in providing context to changes in nester and nest abundance, 

such as lending support to hypotheses that an increase in nester abundance is due to increased 

recruitment to the rookery, changes in breeding periodicity, or an increase in the adult population 

(Bjorndal et al. 2010). In addition, nester recruitment has long lag times during the impact and 

recovery phases, and, potentially even direct monitoring of nester recruitment from the nesting 

beach, could lead to spurious conclusions towards that overall status of the population. To 

accurately assess patterns in nester recruitment by monitoring nesters, direct measures of 

recruitment (e.g.,, physical or physiological indicators, Hamann et al., 2003) and/or a longer time 

series are necessary, and should be viewed in the context of short-term and long-term impacts to 

the population that may be influential.  

 The GSTABM predicts that a population subjected to 50 years of a relatively low impact,  

~7% of sub-adults and adults removed annually, would take over 100 years to reach a full 

recovery back towards quasi-stable level prior to the impact. When hatchlings are disturbed 

(either alone or in conjunction with sub-adults and adults), the recovery time line is even longer, 

because of demographic time lags. As green sea turtles can take ~ 30 years to reach sexual 

maturity (Zug et al. 2002, Balazs & Chaloupka 2004a, Van Houtan et al. 2014), it is not 

surprising that recovery would be prolonged. However, such a long recovery period is 

unexpected and suggests at least 4 generations are needed to reach ecological recovery. In 

addition, because of delayed maturity, it would take the age structure a long time to “fill in” and 

recover after a sustained impact phase (White et al. 2013). Green sea turtles were listed on the 

endangered species list in 1978 (NOAA Office of Protected Resources 2011), more than 30 years 
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ago, but this suggests that green turtles are still in the initial phase of recovery. While no 

estimates of green sea turtle abundance prior to commercial harvest exist, they were likely quite 

abundant (Balazs 1980, Kittinger et al. 2013, Van Houtan & Kittinger 2014). Prior to 

commercialization, sea turtle harvest in the Hawaiian Islands was regulated by native Hawaiian 

social laws, but European colonialists were known to harvest more intensively, and the Hawaiian 

social restrictions on sea turtle harvest began to erode in the 1800s (Balazs 1980, Witzell 1994). 

In a historical reconstruction of green sea turtle exploitation in Hawaii in the 20
th

 century, the 

commercial fishery was small-scale with limited production and had a localized market, but even 

with relatively low exploitation, fisheries dependent data suggest serial progression, spatial 

expansion and shifts in fishing gears to meet demand – all signs of over-harvest (Van Houtan & 

Kittinger 2014). Our model mirrors this as a relatively small impact rate to sub-adults and adults 

results in a dramatic decline and recovery pattern that fell in line with nesting data from Hawaii. 

If Hawaiian green sea turtles are allowed to continue on the current recovery trajectory, with no 

other major impacts to population growth, it is plausible that population size will continue to 

increase for quite some time.  

We present a simple analysis of annually varying levels of detection probability that 

clearly illustrates the chasm between data collected on the nesting beach and the true number 

adults. We made the simplifying assumption that average detection probabilities were constant 

over time and independent of other variables. Yet, this is a simplification of how sea turtle 

monitoring occurs. Detection probabilities often show trends over time (Pfaller et al., 2013), and 

can vary within seasons (Piacenza et al. In review) or could potentially be dependent on the size 

of the nester population (i.e. observer saturation). In addition, in the GSTABM the monitoring 

sub-model randomly samples, with error, all available nesters each year. However, most sea 
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turtle monitoring occurs on discrete stretches of beaches, i.e. index beaches, and does not 

randomly sample from all possible nesters; as sea turtles have a measure of nest site fidelity not 

all nesters are equally prone to monitoring (Tucker, 2010). These facets of sea turtle monitoring 

further occlude the relationship between the estimated and true population size. In reality, the 

relationships of estimated adult population from observed nesters or nests are probably much 

more complex. Additionally, we made the simplifying assumptions that vital rates (breeding 

probability and clutch frequency) and detection probabilities could be accurately estimated from 

field data and were constant over time. This is not a trivial assumption, as most sea turtle 

monitoring programs, especially those that monitor only nests, cannot accurately estimate 

breeding probability and clutch frequency. This assumption further simplifies the relationship 

between true and estimated adult abundance, and in reality estimating adults from observed 

nesters and nests is probably much more inaccurate. Further work, using the GSTABM as an 

operating model with realistic monitoring functions, to assess which monitoring strategies 

provide the most accurate population assessments should help to clarify these concerns. 

 

Conclusions 

In summary, the similarity of our predictions from the GSTABM with observed patterns 

suggests that the model is a faithful representation of green sea turtle population dynamics and 

that it can be a used as a tool for sea turtle biologists and managers. Additionally, because the 

GSTABM simulates population impact and monitoring processes, it is an important tool to 

determine relationships with monitoring, population assessment, and changes in the underlying 

biological processes driving changes in the population, and especially, changes on the nesting 
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beach. Future work will examine in detail how changes in biological processes can influence 

population assessments drawn from data collected from nesting beaches.  

 Finally, in simulating population dynamics, population modelers typically use many 

replicates to represent the variability and uncertainty in outcomes. However, in reality most 

biologists and managers are focused on one single population, and are thus are only working 

with one single population trajectory, with a particular harvest legacy and demographic time lags 

dependent on how the age structure was disturbed. Without knowing the underlying biological 

processes driving changes in observed nesters or nests, it is impossible to determine where a 

population falls in the schema of monitored data to true population size (i.e. Fig. 3.10), in other 

words we cannot know if a population is being over- or under-estimated. However, important 

clues can be gleaned by understanding differential impacts to age classes and subsequent 

recovery, and monitoring vital rates, such as breeding probability, clutch frequency, and age-at-

maturity.  
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Table 3.1 Summary of state variables in the agent-based model of green sea turtle population 

dynamics. 

Variable Name Description 
Mean (Range) or 

States 
Units 

Statistical 

Distribution 

Age Age in years (0-85) years - 

Age Class Development stage 

Hatchling, 

Pelagic Juvenile, 

Neritic Juvenile, 

Sub-adult, 

Neophyte, Adult 

- - 

Age-at-maturity 
Age individual reaches 

sexual maturity 
30 (17 – 41) years Poisson 

Clutch 

Frequency 

Nests laid during 

reproductive season 
4 (1 – 8) nests Poisson 

Clutch Size 
Potential number of eggs 

laid per nest 

43 (5 – 87)  

(8; 1 - 16 super-

individuals) 

eggs Poisson 

Reproductive 

Status 

Indicates if individual 

nested at given time step 

nester / non-

nester 
- - 

Hatchlings 

Produced 

Realized number of eggs 

laid across all clutches in a 

given reproductive season, 

based on Ricker density 

dependent type function 

103 (0 – 187)  

(19; 0 – 34.7 

super-individuals) 

eggs - 

Remigrations 
Number of years between 

nesting seasons 
2.4 (2  - 17) years - 

Times-nested 
Total number of nesting 

migrations in lifetime 
3.2 (0 – 32) 

nesting 

seasons 
- 
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Table 3.2. Summary of parameter information used in the agent-based model of green sea turtle 

population dynamics. SD = standard deviation, CV = coefficient of variation. 

Parameters Value Reference Notes 

Age Classes 
 

Balazs and Chaloupka, 

2004; Bjorndal et al., 

2013; Van Houtan et 

al., 2014; Zug et al., 

2002 

 

Hatchling Ages 0 - 1 

Pelagic Juvenile Ages 2 -3 

Neritic Juvenile Ages 4 - 10 

Sub-adult 
Age 11 - < Age 

Maturity 

Neophyte Age Maturity 

Adult 
> Age Maturity – 

Age 85 

Annual Survival 
 

Van Houtan et al., 

2014, 

Piacenza et al. In 

Review 

based on long-term 

MSORD mark-recapture 

analysis 

Hatchling 0.350 

Pelagic Juvenile 0.800 

Neritic Juvenile 0.824 

Sub-adult 0.876 

Neophyte 0.929 

Adult 0.929 

Breeding 

Probability 

0.2519 (SD = 

0.0127), gamma 

distribution 

(α=4.80124, 

β=19.06008) 

Piacenza et al. In 

Review 

based on long-term 

MSORD mark-recapture 

analysis 

Scale factor 5.4 
 

scaling factor used to reduce 

the raw number of 

hatchlings and pelagic 

individuals into super-

individual groups, fit based 

on lifetable analysis 

Clutch 

Frequency 
4 (SD = 4) 

(Tiwari et al., 2010; 

Piacenza et al. In 

review 
 

Clutch Size 8 (SD = 8) 
(Niethammer et al. 

1997) 

values for super-individual 

groups 

Intrinsic rate of 

increase (r) 
0.15 

 

intrinsic rate of increase for 

Ricker function for 

hatchling production, 

calibrated internally 
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Table 3.2 (Continued). Summary of parameter information used in the agent-based model of 

green sea turtle population dynamics. SD = standard deviation, CV = coefficient of variation. 

 

Parameters Value Reference Notes 

Hatchling 

production 

carrying capacity 

(Knesters) 

500 
 

Carrying capacity 

for nesting beaches, 

calibrated internally 

Hatchlings 

Produced 
( (1 ( ))

( )

t

nesters

Nesters
r

K

tHP CS CF e


  
(Niethammer et al. 

1997) 

density-dependent 

function 

Removal function  t t tTR SA A F    
  

Removal rate (F) 

Age 11+: 6.67% 

Nests: 50% 

Nests:25%, Age 11+: 

3.33% 

 

occurs for 50 years, 

calibrated internally 

Detection 

probability (p) 
0.1, 0.5, 0.90 (CV=2), 

Pfaller et al., 2013; 

Phillips et al., 2014, 

Piacenza et al. In 

review 

 

 

 

Table 3.3. Initial conditions for green sea turtle age structure. 

Age Class Ages Initial Abundance 

Hatchlings 0 - 1 499,311 / scale-factor 

Pelagic Juveniles 2 - 3 508,129 / scale-factor 

Neritic Juveniles 4 - 11 161,297 

Sub-adults 12 - Age-at-maturity 73,388 

Neophytes Age-at-maturity 1,416 

Adults > Age-at-maturity 18,909 

  



75 

 

 

 

Figure 3.1. Conceptual diagram of model processes for the agent-based model of green sea turtle 

population dynamics. 
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Figure 3.2. Green sea turtle agent-based model sub-processes. (A) Cumulative frequency of 

mature sea turtles as a function of age, (B) frequency of annual breeding probability as drawn 

from a truncated gamma distribution, (C) hatchling density-dependent production by nester 

abundance (the black points are the mean hatchling production at each time-step across 50 model 

replicates and the shaded area is the 95% confidence interval and (D) Influence of the climate 

parameter on breeding probability (gray points are raw data and the dashed line indicates mean 

breeding probability as a loess function of climate). Output is for all model runs time-steps 175-

350. 
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Figure 3.3. Realized detection probabilities for the three experimental mean inputs (p = 0.1, 0.5, 

and 0.90). Detection is a stochastic parameter with a logit-normal distribution. Standard 

deviation of the three mean inputs was scaled based on coefficient of variation (CV = 0.2). 

Output is for all model runs time-steps 175-350. 
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Figure 3.4. Number of simulations needed to reach quasi-stabilization in the percent coefficient 

of variation (CV) of (A) adult abundance, (B) nester abundance, (C) discrete population growth 

rate, and (D) nester recruitment. Approximate consistency (the initial drop in CV after in the CV 

was achieved after ~ 30 simulations across all four output variables. 
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Figure 3.5. Realized frequency distributions of the four main individually variable life history 

traits. (A) Clutch Size, (B) Clutch Frequency, (C) Age-at-Maturity, and (D) Remigration 

Interval. The vertical dashed lines indicate the mean value. Clutch size, clutch frequency, and 

age-at-maturity are stochastic variables drawn from a Poisson distribution. Remigration interval 

emerges based on the annual breeding probability and non-nester behavior. Individual-based data 

are for all individual adults from time-step 350 for 1 model run. Remigration interval was 

analyzed from individual veteran nesters.  
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Figure 3.6. Female green sea turtle population size and structure simulated for 175 years and 

replicated 50 times. Colored lines indicate the mean size of the age classes and shaded areas 

indicate the 95% confidence intervals. The pink shaded area indicates the 50 year removal period 

of sub-adults and adults, simulating intensified harvest of green sea turtles in Hawaii in the 20
th

 

Century.  
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Figure 3.7. Emergent population level processes were evaluated over 175 years, with three 

distinct phases. (A) Adult abundance, (B) nester abundance, (C) discrete population growth rate, 

and (D) nester recruitment. Population trajectories are: Stable (years 175-199), Impact (years 

200-250; 6.67% sub-adults and adults removed year
-1

), and Recovery (years 251 – 350). Black 

lines show the mean value with confidence limits (95%) in gray, the pink shaded area indicates 

the 50 year impact phase. In (B), the blue line indicates the observed nester abundance in the 

Hawaiian Islands, assuming 50% of nesting occurs at the main rookery in East Island. In (D), the 

blue line represents the observed proportion of neophytes (assumed from newly tagged 

individuals) in Hawaii. 
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Figure 3.8. Emergent population level processes when nests are disturbed (50% removed year-1 

for 50 years). (A) Adult abundance, (B) nester abundance, (C) discrete population growth rate, 

and (D) nester recruitment. Emergent processes were evaluated over 175 years, with three 

distinct phases: Stable (years 175-199), Impact (years 200-250), and Recovery (years 251 – 350). 

Black lines show the mean value with confidence limits (95%) in gray, the pink shaded area 

indicates the 50 year impact phase.  
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Figure 3.9. Emergent population level processes when nests, sub-adults, and adults disturbed 

(25% nests and 3.33% sub-adults and adults removed year-1 for 50 years). (A) Adult abundance, 

(B) nester abundance, (C) discrete population growth rate, and (D) nester recruitment. Emergent 

processes were evaluated over 175 years, with three distinct phases: Stable (years 175-199), 

Impact (years 200-250), and Recovery (years 251 – 350). Black lines show the mean value with 

confidence limits (95%) in gray, the pink shaded area indicates the 50 year impact phase.  
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Figure 3.10. Frequency distributions for true and estimated adult abundance with sub-adult and 

adult impacts. 6.67% of sub-adults and adults were removed annually for 50 years. Detection 

levels varied with a mean of 0.1, 0.5, and 0.9. The axes were allowed to change between figures 

to improve visualization. 
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Figure 3.11. Frequency distributions for true and estimated adult abundance with nest impacts. 

50% of nests were removed annually for 50 years. Detection levels varied with a mean of 0.1, 

0.5, and 0.9. The axes were allowed to change between figures to improve visualization.  
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Figure 3.12. Frequency distributions for true and estimated adult abundance with nest and Age 

11+ impacts. 3.33% of sub-adults and adults and 25% of nests were removed annually for 50 

years. Detection levels varied with a mean of 0.1, 0.5, and 0.9. The axes were allowed to change 

between figures to improve visualization. 
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Figure 3.13. Estimates of nester recruitment drawn from observed nesters, with varying levels of 

detection probability, and different impact scenarios. (A), Age 11+ were removed (6.67% year
-1

 

for 50 years ), (B) nests were removed (50% year
-1

), and (C) nests (25% year
-1

) and Age 11+ 

(3.33% year
-1

) were removed. The black line represents the 1:1 line between the true and the 

estimated nester recruitment. For improved visualization and to maintain equal sampling, 25 

years were randomly selected from both the impact and recovery phases.  
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ABSTRACT 

Population monitoring must be accurate and reliable to correctly classify populations as 

endangered or recovering. Green sea turtles, Chelonia mydas, have endangered and threatened 

populations globally, but several nesting beaches have shown substantial increases in the number 

of nests or nesting females. Using sea turtle nesting beach surveys as a population index for 

assessment is problematic, yet pragmatic because they are often the only population indices that 

are easily accessible. Process and observation errors, compounded by delayed maturity, obscure 

the relationship between trends on the nesting beach and the population as a whole. We present a 

new simulation-based tool, Monitoring Strategy Evaluation (MoSE), to explore the relationships 

between monitoring data and assessment accuracy. Like its predecessor, Management Strategy 

Evaluation, MoSE has three main components: the simulated “true” operating model (an agent-

based virtual population of sea turtles), an observation model, and an estimation model. To 

explore this first use of MoSE, we apply different treatments of population impacts, sampling, 

and detection of the virtual “true” population, and then sample the nests or nesters, with 

observation error, to test if the observation “data” accurately diagnose population status 

indicators. Based on the observed data, we estimate adult abundance, nester recruitment, and 

population trend and compare these indices to the known values from the operating model. We 

ran a series of scenarios with different process and measurement errors, including harvest 

impacts, cyclical breeding probability, and sampling biases, to see how these realistic factors 

impact accuracy in estimating status indicators that are based on constant demographic 

parameters or parameters that are measured annually. We also explored the necessary duration of 

monitoring for accurate trend estimation. Disturbance type and severity can have important and 

persistent effects on the accuracy of population assessments drawn from monitoring rookeries. 
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Accuracy in abundance estimates may be most improved by avoiding clutch frequency bias in 

sampling and including annually varying (versus constant) breeding probability, detection 

probability, and clutch frequency in the estimation model. Accuracy of proportion of neophytes 

may be most improved by increasing detection level and avoiding age-bias in sampling. The 

accuracy of estimating population trend is influenced by the underlying population trajectory, 

age classes disturbed and disturbance severity. At least 10 years of monitoring data are necessary 

to accurately estimate population trend, and longer if juvenile age classes were disturbed and 

trend estimates occur during the recovery phase. The MoSE is an important tool for sea turtle 

biologists and conservation managers because it allows biologists to make informed decisions 

regarding the best monitoring strategies to employ for sea turtles 

 

4.1 INTRODUCTION 

 

Population monitoring must be accurate and reliable for biologists and conservation 

managers to correctly classify populations as endangered or in recovery. In addition, monitoring 

data is an important indicator of whether management actions are effective, but the data must be 

reliable. Many endangered species are often considered data-poor or have low encounter rates 

with monitoring programs that may obscure true population trends (Colyvan et al. 1999, 

Akçakaya et al. 2000). In long-lived, migratory species, where monitoring can only occur on 

particular demographic classes for short periods of time, monitoring may only give a narrow 

view into population, and indices may give a false signal of abundance and population trend, 

especially during unstable periods (Maxwell & Jennings 2005, Taylor et al. 2007, Singh & 

Milner-Gulland 2011, Lynch et al. 2012). If monitoring yields inaccurate data and the subsequent 

population assessments make false interpretations of population size and trends, conservation 
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errors may ensue. There are two main kinds of conservation errors: to conclude a population is 

threatened when in fact it is not and to conclude a population is not threatened when in fact it is; 

both kinds of error have biological, economic and societal consequences (Taylor & Gerrodette 

1993, Snover & Heppell 2009). In all, biologists and managers need to exercise caution when 

interpreting population indices from monitoring, particularly when those interpretations have 

strong management implications. Certain analytical tools may help to clarify relationships 

between observed and true population abundance, recruitment and trends.  

Sea turtles are globally threatened taxa, with some populations in recovery from 

overexploitation while others continue to decline (Chaloupka et al. 2008, Wallace et al. 2011, 

IUCN 2015). The life history of these species complicates monitoring. Sea turtles are long-lived, 

late-maturing, highly migratory, and spend most of their life offshore. With late maturity comes 

temporal lags in recovery, and the length of those time lags depend on the age classes disturbed 

and how conservation benefits survival of those age classes. The duration of the time lags 

ultimately may have important implications for monitoring and assessment (Crowder et al. 1994, 

Heppell et al. 1996, Koons et al. 2005, White et al. 2013). Most sea turtle monitoring is 

conducted at nesting beaches, where nests or individual female nesters are counted. But, females 

do not breed annually and may be decades old at first nesting, so just a tiny fraction of the total 

population is monitored (Crouse et al. 1987). Nesting abundance typically displays large 

fluctuations inter-annually, likely due to variability in breeding frequency and environmental 

conditions, but these fluctuations do not necessarily reflect true changes in the adult population 

(Piacenza et al. In review, Hays 2000, Solow et al. 2002). It is uncertain how accurate the 

extrapolations from nesting beach indices are for estimating population abundance, recruitment, 

and population trends (Hays 2000, Bjorndal et al. 2010, Richards et al. 2011). Considering that 
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most sea turtle populations are in demographic flux, and transient behaviors in structured 

populations can have opposing responses for some demographic classes during the impact and 

recovery phases, it seems likely that population assessments are inaccurate when based on 

monitoring from beach surveys (Crowder et al. 1994, Hastings 2001, 2004, Koons et al. 2005, 

White et al. 2013). True population dynamics may further be obscured when monitoring only 

observes reproductive classes, i.e. nesters and nests.  

Beach surveys, however, are often the only way biologists can encounter sea turtles to 

measure abundance, as in-water surveys can be cost prohibitive and often have very low 

encounter rates. Can we optimize monitoring on the nesting beach to give the most accurate data 

on population size, recruitment and trends over time?  In a recent report of the National Research 

Council (NRC), the authors recommended a tiered approach to nesting female abundance counts 

on beaches spanning a spectrum of data scope and monitoring (Bjorndal et al. 2010). But are 

these recommendations too expensive and too time consuming for government agencies, 

academics, and non-profit monitoring groups to implement?  Given the effort and time spans 

involved in monitoring sea turtles, prognostic evaluation of monitoring options is important so 

that research groups can decide in advance how to optimize monitoring efforts on nesting 

beaches (sensu Heppell and Crowder 1998). 

To address these issues, we developed a new tool to explore the effects of different kinds 

of monitoring data, and their realistic uncertainties, on population response predictions: 

Monitoring Strategy Evaluation (MoSE). We based this tool on Management Strategy Evaluation 

(MSE), a simulation-based framework developed in fisheries science (Smith et al. 1999). 

Management Strategy Evaluation was developed to evaluate trade-offs in alternate management 

schemes and to assess the consequences of uncertainty for achieving management goals (Punt et 
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al. 2014). MSE simultaneously considers three main aspects of the biological-management cycle: 

the biological system (operating model), the observation process, and population assessment and 

management (Sainsbury et al. 2000, Bunnefeld et al. 2011). In the MoSE, we use the same 

general approach of creating a biologically realistic virtual population for sampling, and then 

apply various uncertainties to the “data” collected from the operating model to see how 

interpretations of population status are affected by what data are obtained. The general 

framework can also be used to simulate management actions and the ability to detect their 

effects, such as a simulation based power analysis to examine the importance of time series 

length and measurement error (Taylor and Gerodette 1993). Our MoSE approach is novel in that 

it specifically experiments with monitoring and data uncertainty to determine the effect of 

different monitoring strategies on population assessments and how observation errors propagate 

to population assessment errors, such as inaccurate estimates of adult abundance, recruitment and 

population trend.  

Our primary goal is to illustrate how the MoSE approach can provide advice on how to  

improving monitoring plans used to assess populations of sea turtles, using an agent-based model 

for green sea turtles (Piacenza et al. In Prep, Chapter 3) as the operating model and a series of 

simulated population conditions. We asked four primary questions:  

(1) Given each biological and observation scenario, can we accurately estimate 

population size, recruitment, and population trend?   

(2) How does time-series length affect the accuracy of these population status indicators?   

(3) What are the probabilities of false positive and false negative trend diagnoses?   

(4) Does the population structure and harvest legacy influence which monitoring strategy 

is best?   
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4.2 METHODS 

 

Monitoring Strategy Evaluation: A New Tool 

Our Monitoring Strategy Evaluation (MoSE) tool builds on the Management Strategy 

Evaluation framework to address concerns regarding monitoring effectiveness of sea turtles. 

While management strategy evaluation focuses on the entire cycle of biological system, 

monitoring, stock assessment and management, we simplify the cycle to examine the biological 

system, monitoring and population assessment (Fig. 4.1). Here we are most interested in the 

discrepancies of the population status indicators (PS0; estimated population size, recruitment and 

population trend) from the true values obtained from the operating model (PS
*
), dependent on 

the biological and impact state and monitoring approach employed. 

The Operating Model – Simulating green sea turtle populations 

We developed our MoSE tool using an agent-based model (ABM) – the green sea turtle 

agent-based model (GSTABM: Piacenza et al. in prep, Chapter 3), where individual sea turtles, 

with individual level variation in reproduction, survival, and age at maturation, are simulated and 

the process of observing and collecting data from sea turtle nesters and nests is simulated (Table 

4.1 and Fig. 4.2). Simulating biological and observation data is advantageous in this effort for 

several reasons. First, we “know” the “true” state of the population as the biological model is 

simulated and can compare that to the state of simulated observed data. ABMs are also useful 

because they allow for explicit modeling of two independent sources of variability in simulated 

data: process and observation errors. ABMs simulate individual behaviors and therefore operate 

at the scale by which population dynamics and monitoring occur (Letcher et al. 1998, DeAngelis 

& Mooij 2005). ABMs were previously used for MSEs to evaluate multiple uses of ocean 
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resources off the western coast of Australia and recreational fishing in Australia (McDonald et 

al. 2008, Gao & Hailu 2013). ABMs have been applied to sea turtles to study population 

viability, the influence of temporal variability and age-dependent mortality on populations 

dynamics, and to test different monitoring schemes for within season sampling to optimize 

monitoring season timing and duration (Mazaris et al. 2005, 2006, Mazaris & Matsinos 2006, 

Whiting et al. 2013). ABMs are particularly useful when studying the coupling of biological and 

monitoring models, as biological and monitoring complexity can both be incorporated, such as 

density-dependence, environmental forcing, sampling biases, and interannual variability in 

sampling.  

The GSTABM creates individuals with variable age-at-maturity, clutch frequency, and 

clutch size (Fig. 4.2). Hatchling production is density dependent, and regulated by the nester 

population in a given year. Because individuals vary in their age-at-maturity, stage lengths of 

sub-adults vary across individuals (range for sub-adults: 6 – 31 years). Environmental variability 

is imposed with a random climate effect that reduces breeding probability by 25% every 10 years 

on average. The GSTABM also simulates annually varying breeding probabilities, which is a 

more accurate representation for green turtles, as they are obligate 1-year skip nesters, than how 

breeding probability is typically modelled in matrix projection models, for example. In turn, 

interannual variability in nesting abundance, characteristically observed in nesting populations, 

emerges in the model (Piacenza et al. In Review (Chapter 2), Carr et al. 1978, Hays 2000, Solow 

et al. 2002). After initialization (years 0-174), the model follows this general timeline: stable 

population (175-199 time steps), impact (200-249 time steps), and recovery (250 – 350 time 

steps). The initialization period is discarded as the population is reaching quasi-stabilization in 

the population structure. Henceforth, we refer to the three main phases, stable, impact and 
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recovery as the population trajectories. The stable phase represents the “control” period in which 

no harvest and variability in abundance and nesting is due to demographic and environmental 

stochasticity. We implemented the model in NetLogo 5.1.0 (Wilensky 1999). For complete 

details on model overview, design and details see Piacenza et al. In Prep. (Chapter 3). 

The Observation Model - Simulating Population Monitoring 

 Details of the base population monitoring sub-model of the GSTABM are included in 

Piacenza et al. In prep. (Chapter 3). The input detection probability (p) is a random variable with 

a logit-normal distribution (Fig. 4.2D). We assume that variability was constant and proportional 

to the mean. We scale the standard deviation to the mean so that the standard deviation would be 

proportional to the mean across the experimental detection levels, based on the coefficient of 

variation (CV = 0.2) from estimated detection probabilities from a 29 year study of mark-

recapture analysis of green sea turtles in Hawaii (Piacenza et al. In review, Chapter 2). Detection 

of nesters and nests in MoSE pertains to detection of nesters and nests within an entire 

population, not a specific nesting beach. The GSTABM collects data from the monitored-nesters 

agent set similar to output data collected on the population as a whole, including: observed nester 

abundance, observed nest abundance, observed nester recruitment, as well as data on the 

population level means and standard deviations of hatchlings produced per female, remigration 

interval, age-at-maturity, clutch frequency, clutch size, hatchling production, and total number of 

lifetime nesting seasons.  

The Estimation Model – Simulating Population Assessments 

Estimating Adult Abundance  
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To simulate population assessment, we estimated the total number of adults from 

monitored nesters, while assuming constant breeding probability and detection probability, such 

that: 

 
.

, .
ˆ tObs Nesters

t obs nesters BP p
A    (4.1) 

where Ât, obs.nesters= estimated number of adults at time t, BP = breeding probability and p = 

detection probability. We followed a similar routine to estimate the total number of adults from 

monitored nests, while assuming constant breeding probability, clutch frequency and detection 

probability: 

 
.

 
, .

ˆ tObs Nests

t obs nests BP CF p
A    (4.2) 

where Ât, obs.nesters= estimated number of adults at time t, and CF = clutch frequency. We assume 

BP, CF, and p could be accurately estimated from field data, but would be estimated as 

constants, as it is typically performed for sea turtle population assessments (Table 4.2 and Fig. 

4.2; Turtle Expert Working Group 2007, 2009, Bjorndal et al. 2010). We based the parameter 

estimates on the known mean values from the operating model (Table 4.2 and Fig. 4.2). To test 

the improvement in accuracy of incorporating annual estimates of the input parameters, we also 

conducted the same estimation procedure using the known annual values of breeding probability, 

detection probability, and clutch frequency of sampled nesters from the operating model. During 

analysis, to maintain equal sample sizes for the three population trajectories, we randomly 

selected 25 time-steps (across all model replicates) from the impact and recovery phases (which 

both included >25 years), and the stable phase was composed of the first 25 years post-model 

initialization.  

Estimating Proportion of neophytes 
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We defined nester recruitment as the proportion of first-time nesters, i.e. neophytes, in 

the nester population: 

 t
t

t

Neophytes
PN

Nesters
   (4.3) 

where PNt is the proportion of neophytes at time t (Neophytest) in the nester population 

(Nesterst). For the purposes of estimating nester recruitment, we calculated the estimated 

proportion of neophytes, from monitoring nesters, as the observed number of neophytes divided 

by total number of observed nesters, as in Eqn. 4.3.  

Estimating Population Trend 

 We calculated the trends in population growth based on the true and observed number of 

nesters and nests. We calculated the population trend (r) as the slope of an exponential regression 

across 5, 10 or 20 years. We randomly selected the starting points for each trend time-series 

within the three population trajectories for each of the 50 replicate runs of the experimental 

treatments. 

Determining Trend Duration – Deviance from truth and error types 

 We measured the degree of deviance from the true population trend by subtracting the 

estimated trend (either from observed nesters or nests) from the true trend (either total population 

or adult population). Trend was measured from 5, 7, 10, 15, or 20 year time-series, and the 

starting points for the time series was randomly selected within the three population trajectories 

for each of the 50 model runs. We also measured the proportion of false negatives and false 

positives in error estimation. We calculated the proportion of false negatives the number of times 

the estimated trend was negative when the true trend was positive out of each of the 50 replicate 

runs, and calculated the proportion of false positives as the number of times the estimated trend 
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was positive when the true trend was negative out of each of the 50 replicate runs. We included a 

± 3% buffer about the trend estimate, so that trends -0.03 ≤  r  ≤ 0.03 where regarded as stable.  

For all three population assessment status indicators, population trend, adult abundance 

and proportion of neophytes, we compared the estimated values to the quantity simulated in the 

GSTABM operating model, heretofore referred to this as the simulated “true” value. Accuracy 

was defined as the degree of correctness of a quantity, and we practically defined it as the 

amount of deviation from the simulated “true” value  (Flexner 1988). For all three population 

assessment status indicators, we ranked the factors by mean percent error across the 27 

experimental treatments to determine which factors contribute the most towards improving 

estimation accuracy.  

Biological Disturbance and Monitoring Experiments 

To explore this first use of MoSE, we created a 3 x 3 x 3 factorial experiment (27 

treatments) with three levels of detection probability, sampling type (random and two forms of 

non-random), and disturbance type (Fig. 4.1). Each treatment was replicated 50 times for 350 

years. We modelled the mean detection with three levels: 10%, 50% and 90% of nesters and 

nests. We included a broad range of detection probabilities with which to sample the nesters and 

nests to provide an overview of the influence of detectability on sea turtle population 

assessments. 

We included three experimental treatments for sampling error: random, age bias, and 

clutch frequency bias. The random sampling treatment represents a null model, in that sea turtle 

monitoring rarely implements beach monitoring by randomly sampling individuals. Rather, 

rookery monitoring is more comparable to large line-transects along stretches of known nesting 

beaches, and monitoring strives to encounter every single individual or nest on the nesting beach 
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or at least the turtles or nests sequentially encountered while moving down the beach (Gerrodette 

et al. 1999, Schroeder & Murphy 1999, Bjorndal et al. 2010). In the random sampling treatment, 

observed nesters = p ∙ Nnesters, where monitored nesters are a random sample of the total number 

of nesters at each time step. In addition, we included two different model specifications to 

include non-random sampling of sea turtle nesters and nests: (1) age bias and (2) clutch 

frequency bias. In the non-random sampling treatments, the GSTABM sorts nesters by age or 

clutch frequency and selects the oldest or most fecund individuals, i.e. if p = 50%, then the 

GSTABM selects the top 50% oldest turtles. The age bias sampling treatment strives to simulate 

bias towards encountering older individuals and their nests, who may have higher site fidelity to 

the nesting beach than newly recruited nesters or where fisheries bycatch impacts sub-adults and 

small adults so that recruitment to the nesting beach is limited (Mortimer & Carr 1987, Tucker & 

Frazer 1991, Van Houtan & Kittinger 2014). Clutch frequency-biased sampling simulates the 

bias towards more fecund individuals, and their nests, who return to the nesting beach more 

frequently during a nesting season and are more likely have a greater detection probability than 

lesser fecund individuals (Tucker 2010, Hart et al. 2013). While both these non-random sampling 

types may be simplifications of how sea turtle monitoring occurs, we argue that either form is 

more representative of how monitoring occurs than a random sampling type.  

We included three disturbance treatments: (1) Cyclic Breeding Probability with sub-adult 

and adult impacts, (2) High Severity Neritic Juvenile Impacts, and (3) Low Severity Neritic 

Juvenile Impacts. The Cyclic Breeding Probability treatment represents oscillations in annual 

breeding probability that could be a result of large scale climatic events, such as El Nino 

Southern Oscillation. In this treatment, breeding probability oscillates as a sine function, with the 

form: 
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 0.27 (sin(50 ) 0.3)BP year      (4.4) 

Where BP = breeding probability and BP fluctuates between 0.02 and 0.57 (Fig. 4.2B). The 

breeding probability cycle frequency in the GSTABM occurs every 8 years, which is intended to 

simulate about the same frequency as major El Nino events (Limpus & Chaloupka 1997, Saba et 

al. 2007, Trujillo & Thurman 2008). In the Cyclic Breeding Probability treatment, populations 

are also subjected to a disturbance where 7% of sub-adults and adults (ages ≥11) are removed 

from the population annually for 50 years. This treatment simulates the population disturbance of 

targeted sea turtle fishery (Witzell 1994, Van Houtan & Kittinger 2014). While this treatment 

confounds environmental forcing and anthropogenic impacts, it is intended to simulate real-life 

situations where both factors occur simultaneously, but population size and trends are still 

assessed. The Low and High Severity Neritic Juvenile Impacts treatments simulate disturbances 

where neritic juveniles (ages 4 – 10) are removed, such as by fisheries bycatch (Magnuson et al. 

1990, Epperly et al. 2002). In the low severity treatment, 10% of the neritic juveniles removed 

annually for 50 years, and in the high severity treatment, 50% of neritic juveniles removed 

annually for 50 years.  

We recognize that many other experimental biological, detection level and sampling 

treatments could have been conducted. However, our goal is to compare plausible scenarios in 

which to test the MoSE tool and to illustrate the potential drivers of error in population 

assessments of sea turtles. 

 

4.3 RESULTS 

 

Population response to disturbance 
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 Fig. 4.3 illustrates the general population structure during the stable, disturbed and 

recovery phases of two of the experimental treatments: Cyclic Breeding Probability with sub-

adult and adult harvest (Fig. 4.3A) and High Severity Neritic Juvenile Impacts (Fig. 4.3B). When 

the simulated green sea turtle populations were subjected to an 8-year Cyclic Breeding 

Probability and 50 year impacts to sub-adults and adults, the degree of process variance 

depended on the demographic group, e.g., adult population size tended to be more stable inter-

annually than the nester population (Fig. 4.3A). During the 50 year population perturbation, all 

demographic groups declined and then post-disturbance the population began to recover. The 

adult, sub-adult and neritic juvenile age classes showed low amplitude oscillations during the 

recovery period. Fig. 4.3 also depicts the time-series for monitoring nesters and nests with 50% 

detection of nesters and nests randomly sampled to illustrate patterns of monitored demographic 

groups relative to the true population size. Observed nesters and nests were always less than the 

true total number of nesters and nests, respectively, and the degree of interannual variation did 

not mirror the adult population. The cycling of nesters, nests, observed nesters, and observed 

nests were in synchrony.  

 When the simulated populations were subjected to 50 years of neritic juvenile impacts, 

population level responses were more complex (Fig. 4.3B). As sea turtle populations tend to be 

very sensitive to changes in neritic juvenile survival, the responses of the age classes to the 

disturbance was, perhaps, not surprising (Crowder et al. 1994, Heppell 1998). Higher amplitude 

oscillations in abundance occurred for all demographic groups, but were the strongest for Sub-

adults and Neritic Juveniles (Fig. 4.3B). After 100 years of recovery, the populations had not 

returned to pre-disturbance levels. The variance about the main age classes (adults, sub-adults, 

neritic juveniles) was less in comparison to nesters, nests, observed nesters and observed nests. 
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The variance about nesters and nests tended to increase during the latter stages of the impact and 

during the early stages of recovery. Consequently, variance about the observed nesters and nests 

also was increased during this period of the time-series. 

Population assessment from simulated population monitoring 

Estimating adult abundance 

 To illustrate how the MoSE tool works, Fig. 4.4 depicts a single model run for each 

detection level of the Low Severity Neritic Juvenile Impacts treatment. The estimated adult 

abundance from observed nests was greater than the estimated adult abundance from observed 

nesters, and this improved with detection level. The accuracy of estimated abundance improved 

considerably when the estimation procedure included annual estimates of detection, breeding 

probability, and clutch frequency (for observed nests only). The exception to this is in occasional 

low breeding frequency years, which give the appearance of sudden drops in adult abundance. 

The accuracy and precision of estimating adult population size under the three 

disturbance treatments was influenced by the sampling scheme (random, age-biased, clutch 

frequency-biased), demographic group monitored (nesters or nests), and the population trajectory 

(Figs. 4.5 and 4.6, Table 4.3, and Appendix C). The abundance estimates tended to be under-

estimates of the true adult abundance if observed nesters were used, but tended to be over-

estimates if observed nests were used (Fig. 4.5 and Appendix C). The worst estimation errors 

occurred during the stable population trajectory. The worst correspondence in estimating adult 

abundance emerged from monitoring nests with a clutch frequency bias, and resulted in over-

estimated adult abundance. In this case, increasing detection improved accuracy, but even when 

detection was at 90% over-estimation still tended to occur (Fig. 4.5). The severity of neritic 

juvenile impacts influenced the degree of variability about adult abundance and the estimated 
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adult abundance from observed nesters and nests; during the recovery phase of the high severity 

treatment, the accuracy of the estimated abundance improved (Appendix C). If constant inputs 

for the estimation model were used, accuracy generally did not increase with increasing detection 

probability (Fig. 4.5). When the estimation model included annual values of the model inputs, 

accuracy greatly improved even when a clutch-frequency bias was present (Fig. 4.6). In general, 

the accuracy in abundance estimates was most improved by avoiding clutch frequency biases in 

sampling and including annually varying (versus constant) breeding probability, detection 

probability, and clutch frequency in the estimation model (Table 4.3).  

Estimating proportion of neophyte nesters 

Increased detection of nesters tended to result in increased accuracy of estimated 

proportion of neophytes in the nester population, regardless of sampling scheme (Figs. 4.7 and 

4.8). When monitoring occurred with an age bias, estimates of the proportion of neophytes 

tended to be under-estimated and even with 90% detection of nesters, accuracy was worse than 

with random sampling or a clutch frequency-biased sampling (Fig. 4.7B, 4.8C, and 4.8D). When 

neritic juvenile impacts occurred, the accuracy of the estimates of proportion neophyte decreased 

with increasing impact severity (Fig. 4.8). In general, the accuracy of proportion of neophytes 

was most improved by increasing detection level and avoiding age-bias in sampling (Table 4.3).  

Estimating population trend  

Precision in the estimates of adult population trend drawn from observed nesters 

increased with the duration of the trend time-series and detection level across the biological 

treatments of Cyclic Breeding Probability and the Low and High Severity Neritic Juvenile 

Impacts (Fig. 4.9 and Appendix C). We also examined relationships between the true total 

population trend and estimated trend drawn from observed nesters and nests, and true adult 
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population trend and estimated trend drawn from observed nests. Patterns across these groups 

tended to be similar to true and nester-estimated adult population trend presented here (see 

Appendix C). Precision of the trend also depended on the population trajectory; stable 

populations tended to result in more accurate estimates even with just five years of data. For the 

Cyclic Breeding Probability treatment, the impact phase tended to have the least precise 

estimates, but for the neritic juvenile impacts the recovery phase tended to have the least precise 

estimates. For neritic juvenile impacts, the more severe impact resulted in reduced accuracy of 

the trend estimate.  

If only five years of monitoring data is available, a low severity impact to neritic 

juveniles resulted in the most accurate trend estimates, regardless of detection level and sampling 

scheme (Fig. 4.10). Among the three main biological treatments, a low impact to the neritic 

juvenile life stage resulted in the best degree of accuracy in trend estimates with just 5 years of 

data, albeit error in trend estimates were still present. In general, the accuracy of estimating 

population trend was most influenced by the underlying population trajectory, age classes 

disturbed and severity of impacts (Table 4.3).  

Trend duration and accuracy – how long of a time series is necessary to accurately estimate 

population trend? 

The trend deviance tended to reach an asymptote after 10 years, and variance about the 

deviance for less than 10 years of data was an order of magnitude larger than the mean deviance 

from the true adult population trend (Fig. 4.11). We do not show the detection levels as there 

were only modest differences in deviance (see Appendix C). Variance about the deviance in 

trend estimate tended to be greater for the Cyclic Breeding Probability treatment than both the 

Low and High Severity Neritic Juvenile Impacts treatments, but accuracy tended to improve after 
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15 years trend estimate duration. The bias in deviance alternated depending on the population 

trajectory and the biological treatment. For example, the deviance during the impact phase for 

Cyclic Breeding Probability treatment tended to be positive with 5 or 7 years trend duration and 

then approached 0 (Fig. 4.11A), but for the High Severity Neritic Juvenile Impact treatment, 

during the recovery phase, the deviance tended to be negative and remained so for 20 years trend 

duration (Fig. 4.11E).  

The proportion of false negative and false positive trend estimates tended to decrease 

with trend duration, except for during the stable population trajectory (Fig. 4.12). False positive 

errors – concluding a population was increasing when in fact it was decreasing – occurred more 

frequently than false negative errors. But, with the 90% detection, false positive errors did not 

occur during the impact phase of the Cyclic Breeding Probability and false negative errors did 

not occur in the recovery phase of the High Severity Neritic Juvenile Impact treatment (Fig. 

4.12A and H). False positive errors tended to decrease with trend duration during the impact and 

recovery phases, but increased during the stable phase, regardless of detection level. Both types 

of error were more frequent in the Low Severity Neritic Juvenile Impacts than the high severity 

neritic juvenile impact treatment.  

 

4.4 DISCUSSION 

 

The MoSE approach has great potential to help modify and design future monitoring 

programs for sea turtles, and illustrates the potential error and bias that can arise from population 

assessments based on nesting beach data alone. We also found that the history of population 

disturbance, and its severity, can have important and persistent effects on the accuracy of 

population assessments drawn from monitoring rookeries. Increasing detection levels generally 
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results in improved accuracy in population assessments, however imprecision may remain even 

with 90% detection of nesters in a population because of unavoidable process and observation 

errors in monitoring rookeries and in extrapolating data from the nesting beach to the population 

at large.  

The model suggests that improving the accuracy of population status indicators depends 

on which indicators are used in assessment. Accuracy in abundance estimates may be most 

improved by avoiding clutch frequency biases in sampling and including annually varying 

(versus constant) breeding probability, detection probability, and clutch frequency in the 

estimation model. Accuracy of proportion of neophytes may be most improved by increasing 

detection level and avoiding age-bias in sampling. The accuracy of estimating population trend is 

influenced by the underlying population trajectory, age classes disturbed and disturbance 

severity. At least 10 years of monitoring data are necessary to accurately estimate population 

trend, regardless of biological impact, underlying process errors, detection level, and population 

trajectory. Longer trend durations are necessary if juvenile age classes were disturbed and trend 

estimates occur during the recovery phase. Our model suggests that at least 10 years of 

monitoring data are necessary to accurately estimate population trend; this would be influenced 

by the duration of cycles in breeding probability (Solow et al. 2002, Saba et al. 2007, del Monte-

Luna et al. 2012).  

Our work builds on other studies working to optimize monitoring of sea turtle rookeries. 

Sims et al. (2008) found that by examining the statistical power of an intensive protocol versus 

those of shorter duration and later start dates, it is possible to optimize monitoring start date to 

later in the season and for a survey duration of just 10 weeks with a negligible loss of statistical 

power, and a cost savings, for Hawksbill sea turtles (Eretmochelys imbricata) in the Eastern 
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Caribbean. Jackson et al. (2008) examined how accurately different monitoring schemes 

estimated the total number of nests and the ability to detect a population decline based on 

monitoring nests for green and loggerhead (Caretta caretta) turtles in Cypress. Jackson et al. 

(2008) found that accurate nest abundance estimates could be derived from a bolus sampling, 

where monitoring occurs daily for at least 21 days during the peak of the nesting season. 

However, the monitoring schemes were relatively insensitive to small population declines (~1% 

year
-1

), but on average could detect a 10% year
-1

 in 12 years for green turtles and 5 years for 

loggerheads. Whiting et al. (2013) compared within season monitoring schemes to determine the 

optimal scheme for sampling nests for populations with short and long nesting seasons, and 

found that the phenology of nesting (timing and duration of the nesting season) influenced the 

optimal sampling regime. Our work suggests that estimating population trend is relatively robust 

to detection level, sampling bias, and process errors, but may be sensitive to population 

trajectory and the type of biological impacts. Estimating adult abundance and proportion of 

neophytes is sensitive to sampling bias, detection levels and impact history, but less sensitive to 

underlying population trajectory. Altogether, these studies suggest that monitoring program 

managers could make critical decisions to optimize monitoring such that little statistical power is 

lost, but financial and manpower resources are conserved.  

We present here a proof of concept of the MoSE approach. Future work could explore 

other complexities of sea turtle life history, such as within and across season variation in 

reproduction, and differences in reproductive output between neophytes and veteran nesters 

(Broderick et al. 2003, Stokes et al. 2014). We performed a simple base estimation model with 

constant detection, breeding probability, and clutch frequency. However, by including annual 

estimates of these parameters dramatically improved abundance estimates. In doing this we 
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assumed that these parameters could be accurately estimated from field data. In reality, this is not 

a simple or cheap operation and future work could further explore the separate contributions of 

detection level, breeding probability, and clutch frequency to improving accuracy or could even 

explore alternative regimes for collecting these data (e.g., 2 or 5 year sampling cycles). In all, we 

advocate research towards improved ways to accurately measure breeding probability and 

proportion of neophytes. In addition, adding a spatial dimension to the GSTABM would enhance 

exploration of issues of nesting site fidelity, clutch frequency, and line-transect sampling of 

stretches of nesting beaches versus complete census or randomized sampling and their influence 

on the accuracy of population assessments.  

We found that estimates of the proportion of neophytes is sensitive to detection level and 

sampling scheme (random vs. age-biased). Adult recruitment is an important indicator of 

population growth  (Heppell et al. 2003, Richardson et al. 2006, Stokes et al. 2014), and provides 

context to trends observed on nesting beaches (Bjorndal et al. 2010). Integrating proportion of 

neophytes as a metric may enhance the accuracy of population assessments. However, 

monitoring programs would need to ensure high detection levels, and randomized sampling to 

ensure accuracy of recruitment estimates. In addition, improving estimates of the degree of 

“leakiness” to nesting site fidelity (Tucker 2010, Hart et al. 2013, Stokes et al. 2014), in 

particular in relation to neophyte and veteran nesters, or expanding survey areas to capture full 

nest site ranges, would improve adult recruitment estimates.  

Our MoSE does not include a built in biological mechanism for non-random sampling 

(i.e. annual clutch frequency is independent of breeding periodicity, and fecundity is independent 

of age and breeder status, i.e., neophyte vs. veteran nester), so in some ways it is surprising that 

we found deviations for the biased sampling schemes. If we had included these more complex 
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behaviors, we expect that the non-random sampling schemes would have produced even worse 

estimation errors than we report here. This suggests that there are pure mathematical 

relationships with estimating abundance and recruitment that can result in biased estimates, 

above and beyond biological behaviors that would yield biased estimates. In addition, we 

modeled a perfect bias; the oldest turtles and most fecund turtles, for age-bias and clutch 

frequency-biased schemes respectively, were sampled first. In reality, sampling biases are more 

mixed with a predilection towards a certain trait – monitoring tends to sample more fecund or 

older females – but our results suggest that including annual estimates of detection, breeding 

probability and clutch frequency in abundance estimates can greatly improve the accuracy, and 

can overcome unavoidable sampling biases. Our results also suggest that there is an interaction 

with sampling bias and detection (Table 4.3). If unavoidable biases in nesting beach sampling 

occur, then increasing detection to close to 90% of nesters may help to improve accuracy.  

In the MoSE, detection levels were modelled as a stochastic variable with a logit-normal 

distribution. We made the simplifying assumption that the mean of the inputted detection 

probability parameter would be proportional to the standard deviation. However, variability may 

increase as detection decreases. In practice, if a monitoring program has a high detection level 

annually, there may be strong relationships with effort and quality control that would reduce 

inter-annual variability. On the other hand, if a monitoring program has low detection levels, 

effort may vary annually and quality control may be limited which would lead to higher inter-

annually variability. It may often be the case that detection levels improve over time as 

monitoring programs become formalized and monitoring staff become more experienced (Pfaller 

et al. 2013). Alternatively, as a population recovers, it is also possible that nesting could flood 

observer efforts and detection could be inversely related to population size. These have important 
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implications for how accurately we can estimate adult population from monitoring nesters. 

Indeed, if inter-annual variability increases with the long run mean detection probability for a 

monitoring program, then the confidence intervals for estimated adult abundance would become 

increasing large, and may result in estimates of abundance, adult recruitment and trends being 

completely uninformative. Monitoring programs should strive to have the highest detection 

levels possible, given financial and labor resources, but attention should also be paid towards 

limiting inter-annually variability in detection. In other words, it is better to be consistently 

mediocre in detection than inconsistently good over time.  

Estimating adult abundance and population trend from observed nesters is marginally 

more accurate than when extrapolating from observed nests. We caution readers from 

interpreting this as there is no benefit from monitoring individual nesters, a more costly effort, 

over nests. There is an appreciable accuracy gap by using rookery data in general as a population 

index, and a much smaller difference between either source of rookery data – observed nesters 

and nests. The inaccuracy of monitoring nests versus nesters is minimal in comparison, but both 

population indices are problematic, and observed nests are only marginally worse than nesters. In 

addition, monitoring nesters includes value added to a monitoring program in that additional 

biological data can be collected from nesters: body length and size distribution changes, 

proportion of neophytes, size-at-maturity, breeding probability, clutch frequency, clutch size in 

relation to nester size and status (neophyte versus veteran) (Broderick et al. 2003, Stokes et al. 

2014, Piacenza et al. In review). In addition, monitoring nests is a particularly spatial problem, in 

comparison to monitoring nesters (albeit spatial issues exist here as well, i.e. nest site fidelity), 

and had monitoring been modelled as spatially explicit, we may have seen more differences in 
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the degree of accuracy from extrapolating abundance and trend from observed nesters and nests. 

Future work will included expanding the GSTABM to be spatially explicit.  

While there are obvious problems with monitoring sea turtle rookeries, versus in-water 

studies, we recognize that monitoring rookeries remain the most accessible option for 

encountering individuals and collecting individual level data (Bjorndal et al. 2010, Hamann et al. 

2010, Stokes et al. 2014). Our results suggest that a monitoring strategy may be best tailored 

based on the impact history, current population trajectory, and environmental drivers. For 

example, for a population that is currently recovering from intense impacts to neritic juveniles, 

every effort should be made to avoid an age bias to sampling, and 20 years or more are needed to 

accurately estimate population trend using nesting data, because of demographic lags and 

population momentum. Population assessors would need to acknowledge that estimates of adult 

abundance and trend, at least during the early recovery years, are likely to be under-estimated. 

Including annual estimates of detection, breeding probability and clutch frequency reduce 

estimation errors dramatically. On the other hand, for a population susceptible to environmental 

drivers on reproduction (i.e. a strong El Nino influence on reproduction), and with impacts to 

adults and sub-adults (i.e. a targeted fishery), estimates of trend may be inaccurate but are just as 

likely to be over-estimated as under-estimated,  at least in the early years of recovery. For this 

kind of population, trend could be accurately estimated in 10 years. However, it may be difficult 

to have precise estimates of impact rate and history. It may be possible to qualitatively assign 

impact history, based on bycatch rates, or historical records, and categorically assign impact rate 

(i.e., low or high). To assist monitoring groups, The GSTABM, which includes the MoSE tool, 

will be made available to users at the NetLogo User Community Models 

(http://ccl.northwestern.edu/netlogo/models/community/index.cgi). The NetLogo program 

http://ccl.northwestern.edu/netlogo/models/community/index.cgi
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contains a guided user interface, where users can enter particular life history traits (clutch 

frequency, clutch size, age-at-maturity, etc.), impact rate, life stages disturbed, and detection 

levels, to obtain results for a particular sea turtle population and impact history. Ultimately, it is 

important to carefully consider the impact history, and specifically which age classes were 

disturbed, when developing a monitoring program and objectives for monitoring duration.  
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Table 4.1. Parameter definition and inputted specifications for the green sea turtle operating 

model used in the Monitoring Strategy Evaluation. For more detailed information on 

parameterization of the Green Sea Turtle Agent-based Model see Piacenza et al. In preparation 

(Chapter 3). 

Parameter Description 

Mean ± Std. 

Deviation or 

(Range) 

Units 
Statistical 

Distribution 

Age-at-

maturity 

Age individual reaches 

sexual maturity 
30 (17-41) years Poisson 

Clutch 

Frequency 

Nests laid during 

reproductive season 
4 ± 4 nests Poisson 

Clutch Size 
Potential number of eggs laid 

per nest 
43.2  ± 43.2 eggs Poisson 

Hatchlings 

Produced 

Realized number of eggs laid 

across all clutches in a given 

reproductive season, based 

on Ricker-type density-

dependent function 

103 (0 - 187) individuals - 

Remigration 

Interval 

Number of years between 

nesting seasons 
3.4 ± 2.72 years - 

Breeding 

Probability 

Mean annual breeding 

probability 

0.2519 ± 0.0127, 

(α=4.80124, 

β=19.06008) 

year
-1

 Gamma 

Detection 

probability 

Mean probability of 

detecting a nester 

0.1 ± 0.020, 0.5 ± 

0.099, 0.9 ± 0.18 
year

-1
 Logit-normal 

 

Table 4.2. Estimation model parameter inputs. In the base estimation model, we assumed that 

parameters would be estimated as constant value, and not annually estimates, but could be 

correctly estimated from field data.  

Parameter 
Assumed 

Value 

Breeding Probability 0.25 

Clutch Frequency 4 

Detection 0.1, 0.5, 0.9 
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Table 4.3. Mean percent error for the status indicators for the 27 treatments. Mean percent error 

of population trend is presented for 10 years trend duration. The lowest mean percent error for 

each of the three main status indicators is indicated in bolded italics. Mean percent error is based 

on estimated adult abundance calculated with constant detection levels, breeding probability, and 

clutch frequency. CBP = Cyclic Breeding Probability with 7% year
-1

 sub-adult and adult 

impacts, Low NJ = Low Severity (10% year
-1

) Neritic Juvenile Impacts, and High NJ = High 

Severity (50% year
-1

) Neritic Juvenile Impacts treatments. 

Sampling 

Scheme 

Detection 

Probability 

Disturbance 

Treatment 

Status Indicator 

Abundance 

- Obs. 

Nesters 

Abundance 

-Obs. Nests 

Proportion 

of 

neophytes 

Trend - 

Obs. 

Nesters 

Trend - 

Obs. 

Nests 

Random 

0.1 

CBP 39.3 39.4 9.0 2354.5 2208.9 

Low NJ 30.3 30.3 7.7 3888.5 3846.0 

High NJ 32.6 32.6 31.1 5099.3 5119.7 

0.5 

CBP 40.1 40.1 3.1 2601.9 2597.6 

Low NJ 30.3 30.2 2.5 3296.6 3297.0 

High NJ 32.5 32.5 10.2 4165.6 4236.7 

0.9 

CBP 42.1 42.1 0.9 1790.3 1823.6 

Low NJ 30.5 30.5 0.8 3885.3 3911.3 

High NJ 33.3 33.3 2.8 2970.1 3044.3 

Age-

biased 

0.1 

CBP 40.0 40.2 99.5 2709.9 3024.3 

Low NJ 33.2 33.5 98.7 55652.7 56172.4 

High NJ 30.1 30.2 100.0 7855.0 7787.8 

0.5 

CBP 39.8 39.9 78.4 1523.5 1542.8 

Low NJ 33.3 33.4 85.6 5549.7 5296.7 
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Table 4.3 (Continued). Mean percent error for the status indicators for the 27 treatments. Mean 

percent error of population trend is presented for 10 years trend duration. The lowest mean 

percent error for each of the three main status indicators is indicated in bolded italics. Mean 

percent error is based on estimated adult abundance calculated with constant detection levels, 

breeding probability, and clutch frequency. CBP = Cyclic Breeding Probability with 7% year-1 

sub-adult and adult impacts, Low NJ = Low Severity (10% year-1) Neritic Juvenile Impacts, and 

High NJ = High Severity (50% year-1) Neritic Juvenile Impacts treatments. 

 

Sampling 

Scheme 

Detection 

Probability 

Disturbance 

Treatment 

Status Indicator 

Abundance 

- Obs. 

Nesters 

Abundance 

-Obs. Nests 

Proportion 

of 

neophytes 

Trend - 

Obs. 

Nesters 

Trend - 

Obs. 

Nests 

Age-

biased 

0.5 High NJ 30.6 30.7 86.6 6097.4 6171.6 

0.9 

CBP 41.7 41.7 16.4 3771.7 3841.9 

Low NJ 32.7 32.7 26.1 7299.7 7432.1 

High NJ 31.1 31.1 18.6 5947.1 5923.2 

Clutch 

frequency-

biased 

0.1 

CBP 39.4 118.7 9.4 4138.3 3687.1 

Low NJ 31.0 91.4 7.8 3428.4 3362.8 

High NJ 32.3 90.1 30.8 4400.6 4167.1 

0.5 

CBP 39.4 65.3 3.1 64706.2 35684.9 

Low NJ 31.1 44.9 2.6 9619.9 9022.9 

High NJ 32.8 46.6 10.1 2569.5 2339.0 

0.9 

CBP 41.9 42.8 1.0 3946.0 2872.1 

Low NJ 30.6 29.6 0.7 4388.4 3907.0 

High NJ 33.0 31.9 2.9 6659.8 5469.9 
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Figure 4.1. Flow chart for Monitoring Strategy Evaluation (MoSE). Green sea turtle populations 

are simulated in the operating model, using the Green Sea Turtle Agent-Based Model. Female 

green sea turtle population structure and monitoring simulated for 175 years and replicated 50 

times. In each replicate run, the population was subjected to an experimental disturbance from 

time-steps 200-250. Disturbance is simulated with (1) Cyclic Breeding Probability (BP) and 7% 

of sub-adults and adults removed year
-1

 for 50 years, (2) Low Severity Neritic Juvenile (NJ) 

Impacts (10% removed year
-1

), and (3) High Severity Neritic Juvenile Impacts (50% removed 

year
-1

). The monitoring model samples nesters and nests, either randomly or with a type of bias, 

and with an annually variable detection probability randomly drawn from a logit-normal 

distribution. The estimation model uses the simulated monitoring data to estimate adult 

abundance, proportion of neophytes and population trend. Estimated abundance, proportion of 

neophytes, and population trend are compared to the simulated true values generated in the 

operating model. 
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Figure 4.2. Green sea turtle agent-based model sub-processes. (A) Frequency distribution of 

annual breeding probability as drawn from a truncated gamma distribution, used in the Neritic 

Juvenile Impacts treatments, (B) frequency distribution of annual breeding probability as a 

sinusoidal function for the Cyclic Breeding Probability treatment, (C) frequency distribution of 

clutch frequency drawn from a Poisson distribution, and (D) frequency distribution of detection 

probabilities for the three experimental mean inputs (p = 0.1, 0.5, and 0.90). Clutch frequency is 

from individual-based data for all individual adults from time-step 350 for 1 model run; all 

others are for annual values from 50 model runs.  
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Figure 4.3. Female green sea turtle population structure and monitoring simulated for 175 years 

and replicated 50 times for two of the biological disturbance treatments: Cyclic Breeding 

Probability with a 7% of sub-adults and adults removed annually for 50 years (A) and High 

Severity Neritic Juvenile Impacts for 50 years (B). Both panels show monitoring results for 

detection probability with a mean of 50% for nesters and nests. Colored lines indicate the mean 

abundance of the demographic classes and shaded areas indicate the 95% confidence intervals. 

The pink shaded area indicates the 50 year impact period.  
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Figure 4.4. Example of MoSE for estimating adult abundance from 1 model run of the Low 

Severity Neritic Juvenile Impact treatment for the three detection levels. Constant parameter 

inputs for breeding probability, detection, and clutch frequency were used for Observed Nesters 

and Observed Nests. Annual inputs for breeding probability, detection, and clutch frequency 

were used for Observed Nesters Annual and Observed Nests Annual. Detection levels varied 

with a mean of 10% of nesters detected (A), 50% (B), and 90% (C). 
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Figure 4.5. Frequency distributions for true and estimated adult abundance, using constant 

estimates of breeding probability, detection and clutch frequency, from the Low Severity Neritic 

Juvenile Impacts with clutch frequency-biased sampling treatment. Detection levels varied with a 

mean of 0.1, 0.5, and 0.9. The axes were allowed to change between figures to improve 

visualization. 
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Figure 4.6. Frequency distributions for true and estimated adult abundance, using annual 

estimates of breeding probability, detection and clutch frequency, from the Low Severity Neritic 

Juvenile Impacts with clutch frequency-biased sampling treatment. Detection levels varied with a 

mean of 0.1, 0.5, and 0.9. The axes were allowed to change between figures to improve 

visualization. 
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Figure 4.7. True and estimated proportion of neophytes from the nine treatments with Cyclic 

Breeding Probability. Proportion neophyte estimates were based on random (A), age-biased (B), 

and clutch frequency-biased (C) sampling. Detection levels varied with a mean of 0.1 (red), 0.5 

(green), and 0.9 (blue). The diagonal line represents the 1:1 line between the true and estimated 

proportion of neophytes. The proportion of neophytes is calculated as the number of neophytes 

divided by the total number of nesters. Populations were disturbed with 7% of sub-adults and 

adults removed annually for 50 years.  

 



124 

 

 

 

Figure 4.8. True and estimated proportion of neophytes from the treatments with High (9 

treatments) and Low (9 treatments) Severity Neritic Juvenile Impacts. Proportion neophyte 

estimates were based on random (A and B), age-biased (C and D), and clutch frequency-biased 

(E and F) sampling. Detection levels varied with a mean of 0.1 (red), 0.5 (green), and 0.9 (blue). 

The diagonal line represents the 1:1 line between the true and estimated proportion of neophytes. 

The proportion of neophytes is calculated as the number of neophytes divided by the total 

number of nesters. 10% of neritic juveniles were removed (A, C, E) or 50% (B, D, F) were 

removed for 50 years. 
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Figure 4.9. True and estimated adult population trend for populations with random sampling. 

Trend duration was 5 (A, D, G, J, M, and P), 10 (B, E, H, K, N, and Q) and 20 (C, F, I, L, O, and 

R) years of monitoring of the Cyclic Breeding Probability (A – I) and High and Low Severity 

Neritic Juvenile Impacts (J – R) treatments. Population trend is shown for the population 

trajectories: impact (A – C, and J – L), recovery (D – F, and M – O), and stable (G – I, and P – 

R). Neritic juvenile impacts were either 10% or 50% of neritic juveniles removed annually for 50 

years (impact phase) and in the Cyclic Breeding Probability   treatment 7% of sub-adults and 

adults were removed annually for 50 years. Detection levels varied with a mean of 0.1, 0.5, and 

0.9. The diagonal line represents the 1:1 line between the true abundance and the estimated 

abundance. Axis ranges across plots were allowed to vary to enhance visualization of the points.  
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Figure 4.10. True and estimated population trend with 5 years of monitoring nesters across the 

three biological treatments. The biological treatments were Cyclic Breeding Probability   (A – 

C), High Severity Neritic Juvenile Impacts (D – F), and Low Severity Neritic Juvenile Impacts 

(G – I). Nesters were monitored using age-biased (A, D, and G), clutch frequency-biased (B, E, 

and H) and random (C, F, and I) sampling. Detection levels varied with a mean of 0.1, 0.5, and 

0.9. The diagonal line represents the 1:1 line between the true and estimated abundance. 
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Figure 4.11. Adult population trend duration and the mean deviance from the true trend from 

randomly sampled nesters. The biological treatments were the Cyclic Breeding Probability   (A – 

C), the Low Severity Neritic Juvenile Impacts (D – F), and the High Severity Neritic Juvenile 

Impacts (G – I) treatments. Deviance is calculated as the difference of the true population trend 

minus the estimated population trend. A deviance of 0 indicates no difference between the true 

and estimated population trend. Errors bars indicate the standard deviation about the mean 

deviance. True and estimated population trend were calculated across 5, 7, 10, 15, and 20 year 

durations. Axis ranges across plots were allowed to vary to enhance visualization of the points.  
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Figure 4.12. Proportion of false negative and false positive trend estimates from randomly 

sampled nesters. The biological treatments were the Cyclic Breeding Probability   (A – C), the 

Low Severity Neritic Juvenile Impacts (D – F), and the High Severity Neritic Juvenile Impacts 

(G – I) treatments. False negative errors occur if the estimated trend < -0.03, but the true trend is 

> 0.03. False positive errors occur if the estimated trend > 0.03, but the true trend is < -0.3. Axis 

ranges across plots were allowed to vary to enhance visualization of the points. 
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5 -  General Conclusions 

In the field of conservation biology, research has focused necessarily on documenting 

species abundance and assessing extinction risk based on trends for both marine and terrestrial 

species (Morris & Doak 2002). However, formalized study of the ecological dynamics of 

recovering populations has been limited, partly due to the nascence of this phenomenon. Indeed, 

examining recovering marine species across taxa and habitats for general trends has been limited 

(but see Lotze et al. 2011, Magera et al. 2013). Multiple populations of green sea turtles are 

showing signs of recovery (Chaloupka et al. 2008). Indeed, green sea turtles in Florida and off 

the Pacific coast of Mexico were recently down-listed from endangered to threatened (National 

Marine Fisheries Service & U.S. Fish and Wildlife Service 2016). This welcome advancement 

brings novel complications and raises new questions to the management of this species (Roman 

et al. 2015). Can we safely transfer rehabilitated species from national control to state or local 

control?  Can we relax bycatch limits or even allow harvest without threatening the hard-earned 

and still novel recovery?  How resistant is recovery to additional and emergent stressors such as 

climate change?  Can we divert limited conservation budgets from newly recovered populations 

to other populations without risking relapse?  All of these questions are predicated on accurate 

and reliable assessments of population size and changes over time. Most population assessments 

of sea turtles heavily rely on population indices from rookeries (Schroeder & Murphy 1999, 

Bjorndal et al. 2013). My research presented here shows that population indices drawn from 

nesting beaches must be treated with caution and should be carefully interpreted in light of 

additional biological information, such as time-series of breeding probabilities, size-distributions, 

historical impacts, detection levels, and nester recruitment. Simple constant estimates, and even 
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those robustly estimated with uncertainty, are useless without an evaluation of whether these 

vital rates are changing over time.  

Agent-based modelling was a useful and flexible tool towards addressing my research 

questions regarding population perturbations and monitoring. From a population modeler’s 

perspective, the type of software used for ABMs is not a trivial decision. I used the software 

NetLogo to program the GSTABM and MoSE. While there are many ABM software programs 

available, and ABMs can be created from scratch using generic statistical programs, such as R, 

NetLogo has many advantages. First, NetLogo was explicitly developed for ABMs and 

automatically accounts individuals, their traits, behaviors, choices, locations, and their ultimate 

fates. It is open access and uses a computer language, Logo, that was originally developed to 

teach children computer coding, and thus should be relatively intuitive (Wilensky & Rand 2015). 

The BehaviorSpace module facilitates sensitivity analysis and experiments by adjusting 

parameter inputs and exports output. NetLogo interfaces with R software, and can communicate 

to R to either run R programs or utilize packages (i.e. statistical packages), and NetLogo can be 

run from R completely and reports output directly to R (Thiele et al. 2014). Across disciplines, 

NetLogo is the most widely used, becoming more common in biology, and allows scientists a 

common platform with which to compare to and learn from other ABMs (Railsback & Grimm 

2012, Wilensky & Rand 2015). For future students considering using ABMs in their research, 

NetLogo comes highly recommended from this student.  

This dissertation presents a modeling framework designed to provide an evaluation of 

monitoring program effectiveness to assist in planning future programs for sea turtles. The 

analysis in Chapter 4 is meant to heuristically present the capabilities of Monitoring Strategy 

Evaluation (MoSE). In the future, more complex biological, observation, and management 
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scenarios will be used to expand the generality of the results presented here. The analysis was 

developed based on data from Hawaiian green sea turtles, but there are many facets of the 

GSTABM and MoSE that make them applicable to other sea turtles and to endangered and 

recovering species in general. First, the MoSE and the GSTABM were developed with the idea 

that eventually the program could be used by any conservation organization to optimize their 

monitoring to meet specific assessment and management goals. Second, The GSTABM code is 

available in Appendix B and the program itself will be deposited in the NetLogo program library 

(https://ccl.northwestern.edu/netlogo/models/index.cgi) and is available for anyone to use. Third, 

the GSTABM can be easily modified to simulate any species or population of sea turtles as it 

includes a guided user interface (GUI) where users can adjust life history parameters, detection, 

and catch rates directly without have to change the internal code. Future work could focus on 

enhancing the GSTABM and MoSE so that is user-friendly and requires no internal coding to 

modify and run. The quantitative tools employed here can be applied to other sea turtle 

populations and will improve monitoring, and result in better estimates of current population 

trends and enhance conservation for all species of sea turtles. 

My research was not without obstacles and some I decided to circumvent rather than 

surmount. One of my initial goals was to perform a similar analysis to the one I did in Chapter 2 

using data on green sea turtles from the Archie Carr National Wildlife Refuge in Melbourne, FL. 

The estimates of the Florida life history parameters could then have been used to parameterize a 

Florida version of the GSTABM. However, while long-term data was available (the University 

of Central Florida has been monitoring nesters and nests for over 30 years), data proofing of 

individuals and their tagging IDs was not advanced enough to allow for an analysis similar to the 

Hawaii data. It is unfortunate that I was not able to complete this arm of the research as it would 

https://ccl.northwestern.edu/netlogo/models/index.cgi
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have been a valuable contribution to be able to compare the changes in the demographic 

indicators across two recovering populations. Hopefully, in the near future data-proofing and 

linking tag IDs to individuals across seasons will be completed and the analysis may be 

performed. In addition, during the MoSE analysis I included an additional biological treatment 

which I eventually discarded. I originally included a pulse impact were a large proportion (20 % 

or 50%) of all neritic juveniles were subjected to a single one-year impact. This treatment was 

meant to simulate an environmental disaster, such as an oil spill or red tide. The pulse treatment 

was intended to test if the estimated population trend detected a short-term impact but the results 

were uninformative. There are several reasons why this might be. The severity of the impact 

(20% and 50% of all neritic individuals in one year) may not have been extreme enough to 

influence the true population trend. In a long-lived species, a one-time impact may not cause a 

population level response (Heppell et al. 2005). Also, the pulse impact may have needed to be 

repeated multiple times over the course of the model runs (which were for 175 years), to be at 

the appropriate scale for the analysis. Third, the form of the trend estimate, an exponential 

regression, may have been inappropriate to detect pulse impacts. I decided to keep the 

assessment methodology simple, however, further analysis of trend estimation forms and the use 

of different types, such as general additive models, may be helpful here (Whiting et al. 2014). 

There has been much debate about the ability for short-term pulse impacts to influence 

population trends in sea turtles (Bjorndal et al. 2011, Caillouet 2014). It seems with further 

development of the proper impact scenario, scale and cycling of environmental catastrophes, and 

estimation model this would be an important research avenue to further explore. Finally, I 

initially made a mistake in the coding for detection probabilities early on; the standard deviation 

of detection was disproportionately large for the smaller detection levels. While the mistake was 
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corrected, the preliminary results were interesting in that when variability in detection was large 

relative to the mean, quite different results were seen for estimates of population abundance, 

recruitment and population trend, and estimation biases were exacerbated. It would be interesting 

to experimentally control the variance about detection levels and approach the analysis similar to 

Chapter 4. As it is possible for variance in detection to be correlated with nester abundance, 

survey duration, observer experience, or monitoring technologies this would be another 

interesting area to further explore in the MoSE framework.  

Perhaps one of the most important message from my research is the importance of 

evaluating breeding probability, size-at-maturity and age-at-maturity for inter-annual variability 

and temporal trends. These life history traits are not easy to monitor in sea turtles, especially 

size- and age-at-maturity, but the importance of these traits to population assessments and to 

accurately detecting changes in population abundance are paramount (Bjorndal et al. 2010). 

Breeding probability can be accurately estimated from mark-recapture efforts, albeit both labor-

intensive and costly (Kendall & Bjorkland 2001). However, more accurate techniques to measure 

size- and age-at-maturity are needed, such as laparoscopic or genetic indicators of maturity 

(Limpus et al. 2003, Hamann et al. 2010). Concerted efforts to improve aging techniques of sea 

turtles are making advancements and should also aid in this effort (Goshe et al. 2010, Snover et 

al. 2011, Avens et al. 2013, 2015, Tomaszewicz et al. 2015). 

Long-term data sets are necessary to adequately estimate changes in demographic 

indicators, and to assess population size, changes in nester recruitment, and population trends. 

Yet studies that result in appropriate datasets are becoming increasingly difficult to maintain. For 

example, the United States Fish and Wildlife Service recently reduced funding for monitoring 

Kemp’s ridley sea turtles (Lepidochelys kempii) in the Gulf of Mexico after 35 years, despite a 
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substantial slowing of population growth since 2009 (Plotkin & Bernardo 2014). Many sea turtle 

populations are data-poor and occur in remote locations that make logistically-challenging 

nightly beach surveys impossible. Further, many existing monitoring programs have limited 

budgets, or are facing budget cuts, or lack infrastructure maintenance to sustain monitoring and 

ultimately make long-term monitoring infeasible. In Hawaii, after 40 years of monitoring nesting 

on East Island, a storm destroyed the primary field camp on Tern Island in December 2012, and 

lacking funding to rebuild the field camp, monitoring efforts on East Island have since been ad 

hoc; this storm effectively ended one of the longest running individual monitoring programs of 

sea turtles globally (Nurzia Humburg & Balazs 2014). Because of limited public and 

governmental support for long-term funding and logistical challenges to accessing rookeries, sea 

turtle biology needs a sea change in how populations are monitored. Monitoring programs, either 

out of choice or necessity, can start to optimize the program to enhance data accuracy and 

reliability, and should also consider within season adjustments to the survey timeframe (Jackson 

et al. 2008, Sims et al. 2008, Whiting et al. 2013). In Chapter 4, the results suggest that the 

historical legacy of impacts can influence the accuracy of monitoring data used to assess 

population trends and nester recruitment. Monitoring programs may take this information into 

consideration and tailor monitoring efforts so that survey duration, detection levels (and 

variability) can be suited to the particular population. This could optimize monitoring so that the 

most information can be gleaned from nesting beach surveys. Further, my research can provide 

justification for the need for at least 10 years of nesting surveys to adequately estimate 

population trend, and potentially longer when impacts to younger age classes have occurred.  

Determining which data streams provide the most accurate estimates of population status, 

evaluating the effects of measurement error and environmental uncertainties on the accuracy of 
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monitoring, and measuring the improvements in status assessment with increasing 

representativeness and time series length will ultimately benefit sea turtles, and endangered 

species in general, by allowing biologists and conservation managers to improve their 

monitoring programs. In all, it is essential to consider the goals of a monitoring plan and 

intended data stream before initiating a monitoring project. Our results suggest detection level, 

impact legacy, process error, sampling bias, and population trajectory can all influence the 

accuracy of population assessments when using data from nesting beaches. Important data from 

monitoring individual nesters and nests can give insight into the population status, but careful 

consideration of all of these factors is warranted. Notably, the biggest contributors towards 

increasing the accuracy of the three population status indicators evaluated here, abundance, 

recruitment and population trend, were different for each. Thus, if a monitoring program is 

striving to accurately estimate all three indicators it would be necessary to make improvements 

on multiple fronts; i.e. detection level, reducing sampling biases, and qualitatively assign 

population trajectory. In all, because of the life history of sea turtles, long-lived, late age-at-

maturity, and highly migratory, monitoring over long time spans is useful for accurate population 

assessments. If most late maturing sea turtle populations follow the general patterns I found in 

my model based on Hawaiian green turtles, I would make the following recommendations:  

1) A priori knowledge of general population trajectory (stable, disturbed, recovering), 

may assist with informed judgements regarding likely biases in trend estimates. Accurately 

estimating trend is particularly difficult during unstable phases such as during decline and 

recovery.  

2) We suggest as least 10 years of monitoring data are necessary to calculate population 

trend. If impacts occurred to the younger life stages, and trend is being estimated during recovery 
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even longer time-series are required. Other research on sampling duration support this 

conclusion as well (Jackson et al. 2008, Sims et al. 2008). 

3) Estimating adult abundance from observed nests is particularly sensitive to clutch 

frequency-biased sampling. Efforts to accurately estimate clutch frequency should be made. 

Pairing surveys of nests with focused individual study (i.e. satellite tags) may assist in rookery-

specific estimates of clutch frequency (Tucker 2010, Hart et al. 2013).  

4) Time-series of nester recruitment (proportion of neophytes) can be extremely useful 

for population assessments and provides context to population changes observed on nesting 

beaches (Bjorndal et al. 2010). Accurately determining proportion of neophytes from mark-

recapture analysis can be problematic (Piacenza et al. In press), but development of 

physiological or genetic markers or tagging of juveniles in foraging grounds and recaptured at 

rookeries may help to enhance this (Hamann et al. 2003, Avens et al. 2009, Goshe et al. 2010). 

Estimates of proportion of neophytes from model outputs were sensitive to age-biased sampling 

and detection levels. In the field, efforts to expand survey areas beyond historically dense nesting 

beaches (which may have an older mean age of nesters) to novel nesting sites, presumably 

utilized by new nesters, may help to alleviate age-bias in sampling, and alternative forms of 

sampling such as aerial survey may assist in this effort (Witt et al. 2009). Understanding the 

phenology of neophyte nesting, versus veteran nesters, for example determining if neophytes 

nest less frequently and arrive at nesting beaches later in the season (Broderick et al. 2003, 

Stokes et al. 2014), may also decrease errors in estimating recruitment. 

5) Nesting beach surveys should strive for the highest detection level possible and reduce 

interannual variation in detection. Variation in detection levels alone can give a false signal of 

population size (Pfaller et al. 2013). When detection levels are by necessity low, such as in 
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populations that are difficult or unsafe to access (Autar 1994, Witt et al. 2009, Whiting & 

Whiting 2011), the best course of action may be to focus on reducing interannual variation on 

detection levels, e.g., maintaining strict survey procedures across years, consistent field 

technician training, consistent length of survey periods over time, etc. 
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Appendix A. Supplemental information for Chapter 2 

 

Table A1. Estimates of straight carapace length (SCL) for newly tagged and veteran nesters at 

East Island, French Frigate Shoals, 1981 – 2010, derived from the top ranked linear mixed 

model.  

Year 
Estimated 

New Tag 

New 

Tag 

SE 

New Tag 

Lower 

95% CI 

New Tag 

Upper 

95% CI 

Estimated 

Veteran 

Nester 

Veteran 

SE 

Veteran 

Lower 

95% CI 

Veteran 

Upper 

95% CI 

1981 90.9253 0.1895 90.25572 91.59488 91.4488 0.1895 90.85864 92.038956 

1982 90.8475 0.189 90.10564 91.58936 91.371 0.189 90.62914 91.960176 

1983 90.6113 0.2837 89.68481 91.53779 91.1348 0.2837 90.20831 91.909588 

1984 90.74532 0.1734 89.8494 91.64124 91.26882 0.1734 90.3729 91.82742 

1985 90.75639 0.242 89.94221 91.57057 91.27989 0.242 90.46571 91.972946 

1986 89.6385 0.337 88.50366 90.77334 90.162 0.337 89.02716 91.041256 

1987 89.4076 0.3317 88.09695 90.71825 89.9311 0.3317 88.62045 90.799968 

1988 89.3011 0.1492 88.35854 90.24366 89.8246 0.1492 88.88204 90.335768 

1989 90.0224 0.1392 89.45714 90.58766 90.5459 0.1392 89.98064 91.037468 

1990 89.9465 0.1551 89.36967 90.52333 90.47 0.1551 89.89317 90.992732 

1991 89.3731 0.1613 88.75296 89.99324 89.8966 0.1613 89.27646 90.431484 

1992 90.4865 0.1236 89.9281 91.0449 91.01 0.1236 90.4516 91.470992 

1993 90.1847 0.1406 89.66687 90.70253 90.7082 0.1406 90.19037 91.202512 

1994 90.6786 0.1536 90.10197 91.25523 91.2021 0.1536 90.62547 91.721892 

1995 90.6514 0.1292 90.09711 91.20569 91.1749 0.1292 90.62061 91.646868 

1996 90.2013 0.1217 89.70954 90.69306 90.7248 0.1217 90.23304 91.182068 

1997 90.4168 0.1146 89.95365 90.87995 90.9403 0.1146 90.47715 91.383652 

1998 91.0679 0.1827 90.48519 91.65061 91.5914 0.1827 91.00869 92.168228 

1999 90.1615 0.1339 89.54096 90.78204 90.685 0.1339 90.06446 91.16618 

2000 89.9799 0.1214 89.47951 90.48029 90.5034 0.1214 90.00301 90.96008 

2001 90.3448 0.1183 89.87499 90.81461 90.8683 0.1183 90.39849 91.318904 

2002 90.5251 0.1122 90.07332 90.97688 91.0486 0.1122 90.59682 91.487248 

2003 91.2229 0.1296 90.74897 91.69683 91.7464 0.1296 91.27247 92.219152 

2004 89.963 0.108 89.4973 90.4287 90.4865 0.108 90.0208 90.916916 

2005 90.0706 0.1174 89.62882 90.51238 90.5941 0.1174 90.15232 91.04294 

2006 90.2549 0.1154 89.79861 90.71119 90.7784 0.1154 90.32211 91.22332 

2007 90.74062 0.115 90.28904 91.1922 91.26412 0.115 90.81254 91.708256 

2008 91.2036 0.1127 90.75731 91.64989 91.7271 0.1127 91.28081 92.166728 

2009 91.0038 0.1269 90.53418 91.47342 91.5273 0.1269 91.05768 91.99476 

2010 90.7972 0.1116 90.54848 91.04592 91.3207 0.1116 91.07198 91.539436 
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Estimating Clutch Frequency using MSORD Models 

In addition to the other demographic indicators estimated in this study, clutch frequency, 

or the number of nests laid in a season, is an important demographic indicator used in population 

models. Clutch frequency is used to estimate nester abundance from the total number of nests 

when only nests are monitored, egg production and cohort strength (National Research Council, 

2010). Clutch frequency could be influenced by age structure of females or environmental 

conditions (Miller 1997).  

In intensively monitored sea turtle populations, clutch frequency can be measured 

directly through re-sights of females within a nesting season, but the estimate will almost always 

be biased low due to missed nesting events. The MSORD model also calculates a derived 

parameter, residence time, or the average number of secondary survey periods that an individual 

spent in the study area during a primary period. This parameter could give an indication of clutch 

frequency. Residence time was modeled as a function of the time since arrival to the nesting 

beach (e.g., the probability a female lays a clutch is dependent on the number of clutches already 

laid), and as our data set only contains breeding females on the nesting beach, allowed for 

derivation of clutch frequency from the model output (Kendall, 2013).  

Clutch frequency from MSORD displayed wide temporal fluctuations (Fig. A1). The top-

ranked model included temporal effects on φ and pent, the parameters used to derive clutch 

frequency. The estimates of clutch frequency ranged from 1.05 (0.0367981 – 1.125 95% CI) to 

4.96 (-30.7 – 40.6 95% CI). However, we found a strong relationship between the estimated 

clutch frequency and the number of secondary sampling periods (Fig. A2). A low number of 

secondary sampling periods biased the estimates of clutch frequency low. If the number of 

secondary survey periods is restricted to ≥ 5, then the estimate of clutch frequency ranged from 
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1.39 (1.18 – 1.60 95% CI) to 4.96 (-30.7 – 40.6 95% CI). In all, these estimates are still greater 

than previously published and show a wide range of variability across years (Table 2.1). Based 

on these results, it is important to carefully consider the length of the survey season when setting 

up a survey with the goal of estimating clutch frequency.  
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Figure A1. Annual estimates of clutch frequency (nests/year) with 95% confidence intervals 

based on multistate open robust design models (MSORD) from 1980-2009. Dashed lines refer to 

published estimates of clutch frequency. 

 

 
 

Figure A2. Estimates of clutch frequency as a function of the number of secondary survey 

periods.  
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Appendix B. Supplemental Information to Chapter 3 

 

Table B1. Local sensitivity index values St of the four output parameters: adult abundance, nester 

abundance, discrete population growth rate, and nester recruitment. 

Input Parameter 

(reference value) 
Min Max 

Output 

Parameter 

Sensitivity (St) 

Biological 

Minimum 

95% of 

Baseline 

105% of 

Baseline 

Biological 

Maximum 

Adult survival rate 

(0.929) 
0.88 0.98 

Adult 

abundance  
-2820.95 3754.66 

 

Nester 

abundance  
-285.69 207.10 

 

Nester 

recruitment  
116.44 -60.64 

 

Population 

growth rate  
49.01 -250.45 

 

Age-at-maturity 

(19+11, SD=11) 

29 

(19) 

31 

(45) 

Adult 

abundance 
139.06 548.90 -511.96 -113.51 

Nester 

abundance 
15.32 40.76 -66.83 -10.623 

Nester 

recruitment 
0.23 -11.84 18.013 -7.083 

Population 

growth rate 
-10.54 -45.23 26.67 -4.32 

Breeding probability 

(0.2519, SD = 

0.114) 

0.24 

(0.077) 

0.26 

(0.5) 

Adult 

abundance 
-188.937 -97.27 108.20 40.61 

Nester 

abundance 
-26.13 -42.52 43.071 9.25 

Nester 

recruitment 
14.31 23.24 -29.66 -8.58 

Population 

growth rate 
1.26 -2.93 -6.53 -10.19 

Climate influence on 

breeding probability 

(0.75) 

0.71 0.79 

Adult 

abundance  
-50.89 -33.43 

 

Nester 

abundance  
1.63 -19.29 

 

Nester 

recruitment  
14.73 9.68 

 

Population 

growth rate  
85.21 114.33 

 

Climate Threshold 

(0.90) 
0.86 0.95 

Adult 

abundance  
-11.44 32.70 

 

Nester 

abundance  
6.87 9.53 

 

Nester 

recruitment  
3.56 0.77 

 

Population 

growth rate  
48.35 47.93 

 

Clutch frequency (4, 

SD=4) 

3.8 

(1.053) 

4.2 

(4.96) 

Adult 

abundance 
-246.56 -323.89 302.68 308.86 

Nester 

abundance 
-27.31 -33.43 55.76 22.90 

Nester 

recruitment 
-2.47 1.70 -35.87 -2.36 

Population 

growth rate 
-0.037 39.67 -18.31 -23.10 
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Table B1 (Continued). Local sensitivity index values St of the four output parameters: adult 

abundance, nester abundance, discrete population growth rate, and nester recruitment. 

 

Input Parameter 

(reference value) 
Min Max 

Output 

Parameter 

Sensitivity (St) 

Biological 

Minimum 

95% of 

Baseline 

105% of 

Baseline 

Biological 

Maximum 

Clutch size (8, 

SD=8) 

7.6 

(6.92) 

8.4 

(10.06) 

Adult 

abundance 
-373.36 -397.04 413.07 394.33 

Nester 

abundance 
-40.76 -40.89 17.76 27.48 

Nester 

recruitment 
6.86 13.029 21.44 -6.26 

Population 

growth rate 
27.62 20.35 -6.33 -27.95 

Hatchling 

production carrying 

capacity (500) 

475 525 

Adult 

abundance  
-159.75 138.98 

 

Nester 

abundance  
-31.22 3.82 

 

Nester 

recruitment 
-0.40 -6.69 7.87 -0.055 

Population 

growth rate  
-14.90 12.81 

 

Hatchling 

production slope 

(0.15) 

0.14 0.16 

Adult 

abundance  
90.11 -102.80 

 

Nester 

abundance  
-13.52 -38.06 

 

Nester 

recruitment  
21.73 11.66 

 

Population 

growth rate  
-22.14 -58.60 

 

Neritic juvenile 

survival rate (0.824) 
0.78 0.87 

Adult 

abundance  
-2358.03 2544.16 

 

Nester 

abundance  
-281.12 143.91 

 

Nester 

recruitment  
13.02 -4.43 

 

Population 

growth rate  
27.56 -201.68 

 

Removals (15) 14 6 

Adult 

abundance  
-124.15 104.56 

 

Nester 

abundance  
-15.52 14.85 

 

Nester 

recruitment  
11.18 -1.28 

 

Population 

growth rate  
14.27 -26.84 

 

Sub-adult survival 

rate (0.876) 
0.83 0.92 

Adult 

abundance  
-3994.03 1521.66 

 

Nester 

abundance  
-7607.63 2816.93 

 

Nester 

recruitment  
-1.24 -1.07 

 

Population 

growth rate  
-13.02 -131.36 
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Green Sea Turtle Agent-Based Model NetLogo Code 

 

;;; Green Sea Turtle ABM - The impact of individual variability in demographic rates on population recovery and 

Monitoring Strategy Evaluation 

 

;; Define global parameters 

globals [ 

  year  

  timesHere 

  timesHere2 

  timesGo 

  timesAge 

  maxTicks 

  numberturtles 

  numberHatchlings 

  numberPelagicJuveniles 

  numberNeriticJuveniles 

  numberSubadults 

  numberNeophytes 

  numberAdults 

  rh ; intrinsic rate of increase for Ricker function for hatchling production 

  Climate ; Climate index to simulate good and poor environmental conditions annually 

  q-norm ; normal random variable for logit-normal distribution for selecting detection stochastic variable 

  q ; catchability coefficient for monitoring nesters 

  q-std-dev ; Standard deviation used for setting q 

  scale-factor ; scaling factor for Super Individual of hatchlings and pelagic juveniles for initialization of SAD 

  SampleSize 

  countNesters 

  countNesters2 

  Nesters 

  Monitored-Nesters   

  Catch ; number of turtles removed during harvest 

  Catch_hatchlings 

  BreedProb 

  Nests 

  Monitored-Nests 

 ] 

 

;; Define life history stages 

breed [ Hatchlings Hatchling ] ; Hatchlings 

breed [ PelagicJuveniles PelagicJuvenile ] ; Pelagic juveniles 

breed [ NeriticJuveniles NeriticJuvenile ] ; neritic juveniles 

breed [ Subadults Subadult ] ; subadults 

breed [ Neophytes Neophyte ] ; Neophyte Nesters 

breed [ Adults Adult ] ; adults 

;; Define turtle specific parameters 

turtles-own [ age AgeClass reprostatus reprostatus2 times-nested remigs remigs_old ClutchFrequency ClutchSize 

newHatchlings AgeMaturity 

  ] ; ; reprostatus = nester or skip-nester, newHatchlings = reproduce new hatchlings , times-nested = count how 

many times in lifetime nested, remigs=how many years since last nesting, AgeClass = Hatchling, PelagicJuvenile 

NeriticJuvenile Subadult Neophyte Adult 

 

;; Initialization procedures 

to setup 

  clear-all 

  ;set Monitored-Nesters no-turtles 
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  ifelse DetectA = 3.841832 [set q-std-dev 2.417518] [ifelse DetectA = -1.643709E-9 [set q-std-dev 0.41646]  

    [ifelse DetectA = -2.216764 [set q-std-dev 0.221504] [set q-std-dev 0]]] ;ifelse DetectA >= 0.94 [set q-std-dev 

0.025] [set q-std-dev (0.2165 * DetectA)] 

  set q-norm random-normal DetectA q-std-dev ;while [(q <= 0) or (q > 1.0) ] [ set q random-normal DetectA q-std-

dev ]; random-normal 0.79 0.17 while [(q <= 0.3) or (q >= 1.0) ] [ set q random-normal 0.75 0.25 ]   ; Catchability 

coefficient = p(t.) top ranked model MSORB Mark 

  set q 1 / (1 + (exp (- q-norm))) 

  set scale-factor 5.4 ; per life table 

  set rh rhA ;0.15 

  set numberHatchlings round (499311 / scale-factor) ; based on Stable age distribution from age structured Matrix 

projection model and Hatchlings and Pel. Juveniles scaled for Super-Individuals 

  set numberPelagicJuveniles round (508129 / scale-factor);  

  set numberNeriticJuveniles 161297 

  set numberSubadults 73388 

  set numberNeophytes 1416 

  set numberAdults 18909 

  set maxTicks 352;601 

  set year 0 

  set timesHere 0 

  set timesHere2 0 

  set timesGo 0 

  set timesAge 0 

  set Climate random-float 1.0 

  ifelse BreedProbVariability [set BreedProb random-gamma BPGammaShape 19.06008193] [set BreedProb 

BreedProbA];[set BreedProb random-normal BreedProbA 0.114 while [(BreedProb < 0) or (BreedProb >= 1.01) ] 

[ set BreedProb random-normal BreedProbA 0.114 ]] [set BreedProb BreedProbA] 

  ;set breedprob random-normal BreedProbA 0.114 while [(breedprob < 0) or (breedprob >= 1.01)] [set breedprob 

random-normal 0.251900417 0.114083441] 

 

     

 ;; Initializing individuals for start of model run 

  set-default-shape turtles "turtle" 

 

 create-Hatchlings numberHatchlings [ setxy random-xcor random-ycor  

   set color magenta - 1 

   set age 0  

   set times-nested 0 

   set remigs 0 

   set remigs_old remigs 

   ifelse AgeMatVariability [ 

   set AgeMaturity 19 + random-poisson AgeMatRand] [set AgeMaturity AgeMatA] ; 30 (median of 40 and 22) - 17 

+ 1 = 14 Zug 2001 and Van Houtan et al. 2014 

  ifelse ClutchFreqVariability [ 

   set ClutchFrequency random-poisson ClutchFreqA] [set ClutchFrequency ClutchFreqA] ; ; mean 4-1 = 3; mean = 

3.37304065, SD=1.254475826 (MSORD Program Mark, with Sec Seasons >=4) 

   ifelse ClutchSizeVariability [ 

   set ClutchSize random-poisson ClutchSizeA] [set ClutchSize ClutchSizeA]  

   if age = AgeMaturity [set breed Neophytes ] 

  if age > AgeMaturity  [set breed Adults] 

  ifelse (breed = Adults) or (breed = Neophytes) [set reprostatus "nester"] 

  [set reprostatus "skip-nester"] 

  set reprostatus2 reprostatus 

     ] 

 

  create-PelagicJuveniles numberPelagicJuveniles [ setxy random-xcor random-ycor  

   set color magenta - 1 
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   set age 2 + random 1  

   set times-nested 0 

   set remigs 0 

   set remigs_old remigs 

   ifelse AgeMatVariability [ 

   set AgeMaturity 19 + random-poisson AgeMatRand] [set AgeMaturity AgeMatA] ; 30 (median of 40 and 22) - 17 

+ 1 = 14 Zug 2001 and Van Houtan et al. 2014 

   ifelse ClutchFreqVariability [ 

   set ClutchFrequency random-poisson ClutchFreqA] [set ClutchFrequency ClutchFreqA] ; ; mean 4-1 = 3; mean = 

3.37304065, SD=1.254475826 (mark, with Sec Seasons >=4) 

   ifelse ClutchSizeVariability [ 

   set ClutchSize random-poisson ClutchSizeA] [set ClutchSize ClutchSizeA]  

  if age = AgeMaturity [set breed Neophytes ] 

  if age > AgeMaturity  [set breed Adults] 

  ifelse (breed = Adults) or (breed = Neophytes) [set reprostatus "nester"] 

  [set reprostatus "skip-nester"] 

  set reprostatus2 reprostatus 

     ] 

 

create-NeriticJuveniles numberNeriticJuveniles [ setxy random-xcor random-ycor  

   set color magenta - 1 

   set age 4 + random 7  

   set times-nested 0 

   set remigs 0 

   set remigs_old remigs 

   ifelse AgeMatVariability [ 

   set AgeMaturity 19 + random-poisson AgeMatRand] [set AgeMaturity AgeMatA] ; 30 (median of 40 and 22) - 17 

+ 1 = 14 Zug 2001 and Van Houtan et al. 2014 

   ifelse ClutchFreqVariability [ 

   set ClutchFrequency random-poisson ClutchFreqA] [set ClutchFrequency ClutchFreqA] ; ; mean 4-1 = 3; mean = 

3.37304065, SD=1.254475826 (mark, with Sec Seasons >=4) 

   ifelse ClutchSizeVariability [ 

   set ClutchSize random-poisson ClutchSizeA] [set ClutchSize ClutchSizeA]   if age = AgeMaturity [set breed 

Neophytes ] 

  if age > AgeMaturity  [set breed Adults] 

  ifelse (breed = Adults) or (breed = Neophytes) [set reprostatus "nester"] 

  [set reprostatus "skip-nester"] 

  set reprostatus2 reprostatus 

     ] 

 

create-Subadults numberSubadults [ setxy random-xcor random-ycor  

   set color magenta - 1 

   ;set AgeClass "Adult" 

   set age 11  

   set times-nested 0 

   set remigs 0 

   set remigs_old remigs 

   ifelse AgeMatVariability [ 

   set AgeMaturity 19 + random-poisson AgeMatRand] [set AgeMaturity AgeMatA] ; 30 (median of 40 and 22) - 17 

+ 1 = 14 Zug 2001 and Van Houtan et al. 2014 

   ifelse ClutchFreqVariability [ 

   set ClutchFrequency random-poisson ClutchFreqA] [set ClutchFrequency ClutchFreqA] ; ; mean 4-1 = 3; mean = 

3.37304065, SD=1.254475826 (mark, with Sec Seasons >=4) 

   ifelse ClutchSizeVariability [ 

   set ClutchSize random-poisson ClutchSizeA] [set ClutchSize ClutchSizeA] ; mean 98 - 85 = 13 scaled to 

survivorship to neritic juvenile stage, avg survivorship = 8.5 see survival excel worksheet 
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  if age = AgeMaturity [set breed Neophytes ] 

  if age > AgeMaturity  [set breed Adults] 

  ifelse (breed = Adults) or (breed = Neophytes) [set reprostatus "nester"] 

  [set reprostatus "skip-nester"] 

  set reprostatus2 reprostatus 

     ] 

 

create-Neophytes numberNeophytes [ setxy random-xcor random-ycor  

   set color black 

   ;set AgeClass "Adult" 

   ifelse AgeMatVariability [ 

   set AgeMaturity 19 + random-poisson AgeMatRand] [set AgeMaturity AgeMatA]  

   set age AgeMaturity  

   set times-nested 0 

   set remigs 0 

   set remigs_old remigs 

   ifelse ClutchFreqVariability [ 

   set ClutchFrequency random-poisson ClutchFreqA] [set ClutchFrequency ClutchFreqA] ; ; mean 4-1 = 3; mean = 

3.37304065, SD=1.254475826 (mark, with Sec Seasons >=4) 

   ifelse ClutchSizeVariability [ 

  set ClutchSize random-poisson ClutchSizeA] [set ClutchSize ClutchSizeA] ; mean 98 - 85 = 13 scaled to 

surivorship to neritic juvenile stage, avg survivorship = 8.5 see survival excel worksheet 

  if age = AgeMaturity [set breed Neophytes ] 

  if age > AgeMaturity  [set breed Adults] 

  ifelse (breed = Adults) or (breed = Neophytes) [set reprostatus "nester"] 

  [set reprostatus "skip-nester"] 

  set reprostatus2 reprostatus 

     ] 

   

   

create-Adults numberAdults [ setxy random-xcor random-ycor  

   set color magenta - 1 

   ifelse AgeMatVariability [ 

   set AgeMaturity 19 + random-poisson AgeMatRand] [set AgeMaturity AgeMatA]  

   set age 28 + random 57  

   set times-nested random 10 

   set remigs random 4 

   set remigs_old remigs 

   ifelse ClutchFreqVariability [ 

   set ClutchFrequency random-poisson ClutchFreqA] [set ClutchFrequency ClutchFreqA] ; ; mean 4-1 = 3; mean = 

3.37304065, SD=1.254475826 (mark, with Sec Seasons >=4) 

   ifelse ClutchSizeVariability [ 

   set ClutchSize random-poisson ClutchSizeA] [set ClutchSize ClutchSizeA]    if age = AgeMaturity [set breed 

Neophytes ] 

  if age > AgeMaturity  [set breed Adults] 

  ifelse (breed = Adults) or (breed = Neophytes) [set reprostatus "nester"] 

  [set reprostatus "skip-nester"] 

  set reprostatus2 reprostatus 

     ] 

 

set countNesters2 count turtles with [ reprostatus = "nester"] 

set SampleSize round(q * countNesters2) 

set Monitored-Nesters no-turtles ;(n-of SampleSize turtles with [reprostatus = "nester"]) 

  

ask patches [ set pcolor cyan + 3 ] 
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reset-ticks 

   

end 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; start procedures ;;;;;;;;;;;;;;;;;;;;;;;;; 

 

to go 

tick 

set year year + 1 

if ticks >= maxTicks [stop] 

if not any? turtles [ stop ] 

 set q-norm random-normal DetectA q-std-dev ;while [(q <= 0) or (q > 1.0) ] [ set q random-normal DetectA q-std-

dev ]; random-normal 0.79 0.17 while [(q <= 0.3) or (q >= 1.0) ] [ set q random-normal 0.75 0.25 ]   ; Catchability 

coefficient = p(t.) top ranked model MSORB Mark 

  set q 1 / (1 + (exp (- q-norm)));set q random-normal DetectA q-std-dev while [(q <= 0) or (q > 1.0) ] [ set q 

random-normal DetectA q-std-dev ]; random-normal 0.79 0.17 while [(q <= 0.3) or (q >= 1.0) ] [ set q random-

normal 0.75 0.25 ]   ; Catchability coefficient = p(t.) top ranked model MSORB Mark 

; if ticks < 175 [set q random-normal DetectA 0.171 while [(q <= 0) or (q > 1.0) ] [ set q random-normal DetectA 

0.25 ]] if (ticks >= 175)  [set q ((0.9428 * ln ticks) - 4.6572) while [(q <= 0) or (q > 1.0) ] [ set q ((0.9428 * ln ticks) 

- 4.6572)]] ;p increasing over time 

;if ticks < 175 [set q random-normal DetectA 0.171 while [(q <= 0) or (q > 1.0) ] [ set q random-normal DetectA 

0.25 ]] if (ticks >= 175)  [set q ((0.1309 * ln countNesters2) - 0.158) while [(q <= 0) or (q > 1.0) ] [ set q ((0.9428 * 

ln ticks) - 4.6572)] ]  ;p function of nester abundance 

ifelse BreedProbVariability [set BreedProb random-gamma BPGammaShape 19.06008193] [set BreedProb 

BreedProbA] ;[set BreedProb random-normal BreedProbA 0.114 while [(BreedProb < 0) or (BreedProb >= 1.01) ] 

[ set BreedProb random-normal BreedProbA 0.114 ]] [set BreedProb BreedProbA] 

;set breedprob random-normal BreedProbA 0.114 while [(breedprob <= 0) or (breedprob >= 1.01)] [set breedprob 

random-normal 0.251900417 0.114083441] 

set Climate random-float 1.0 

Climate_BP 

Harvest 

Harvest_Nests 

ask turtles [ 

grow_old 

set timesGo timesGo + 1 

survive 

     ] 

ask Adults [Nesters?]  

set Nesters (turtles with [reprostatus = "nester"]) 

set countNesters count Nesters ; used for Hatchling Production equation 

ask Nesters [Hatchling_Production] 

;ask Neophytes [Hatchling_Production] 

;ask Nesters [Remig_DD_Climate] 

;ask Neophytes [Remig_DD_Climate] 

;ask Adults [Remig_2] 

ask Nesters [reproduce] 

;ask Neophytes [reproduceNeos] 

Monitor 

update-outputs 

end 

 

to Climate_BP 

 ifelse ClimateBPVariability [ if Climate > ClimateThresh [ 

 set BreedProb BreedProb * BP-Climate-influence]] []  

end 
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to grow_old 

set timesAge timesAge + 1 

set age age + 1 

 if age > 85 [die]  

 if age <= 1 [set breed Hatchlings] 

 if (age > 1) and (age < 4) [set breed PelagicJuveniles] 

 if (age >= 4) and (age < 11) [set breed NeriticJuveniles] 

 if (age >= 11) and (age < AgeMaturity) [set breed Subadults] 

 if (age = AgeMaturity) [set breed Neophytes set reprostatus "nester" set reprostatus2 "nester" set color black] ;and 

(times-nested < 1) 

 if (age > AgeMaturity) [set breed Adults set color magenta - 1] ; and (times-nested >= 1) 

end 

 

to Harvest 

ifelse Harvest_on 

    [ 

if ticks < 200 []  

if (ticks >= 200) and (ticks < 251) [ set Catch (round ((count turtles with [age >= 11]) / F)) (ask n-of Catch turtles 

with [age >= 11] [die] )  

   ] ;set Catch_hatchlings (round (count hatchlings) / F_hatch) (ask n-of Catch_hatchlings hatchlings [die] ) 

if ticks >= 250 []  

]  

 []  

end 

 

 

to Harvest_Nests 

ifelse Harvest_Nests_on 

    [ 

if ticks < 200 []  

if (ticks >= 200) and (ticks < 251) [ set Catch_hatchlings ((round (count hatchlings) / F_hatch)) (ask n-of 

Catch_hatchlings hatchlings [die])  

   ] ;set Catch_hatchlings (round (count hatchlings) / F_hatch) (ask n-of Catch_hatchlings hatchlings [die] ) 

if ticks >= 250 []  

]  

 []  

end 

 

to survive 

;ifelse (ticks > 100) and (Climate < 0.9) [   

; set juvenile2Survival 0.824 

; set subadultSurvival 0.876 

; set adultSurvival 0.929]  

; [set juvenile2Survival 0.7416 ; 0.9*0.824 

; set subadultSurvival 0.7884 ; 0.9*0.876 

; set adultSurvival 0.8361 ]; .9*0.929 ;  ]] 

;if AgeClass = "Hatchling" [if random-float 1.0 > hatchlingSurvival[ die]]  ;;hatchling survival 0.786 (sd=19.2, 

Niethammer et al. 1997) (0.71 (Van Buskirk and Crowder 1994 FFS HI) 

;if AgeClass = "PelagicJuvenile" [if random-float 1.0 > juvenile1Survival [ die]] ;;oceanic juvenile survival 0.8804 

(0.835 - 0.927 95 % CI Chaloupka and Limpus 2005 S GBR) 

if breed = NeriticJuveniles [if random-float 1.0 > juvenile2Survival [ die]] ;; neritic juvenile survival 0.8804 (0.835 - 

0.927 95 % CI Chaloupka and Limpus 2005 S GBR, 5-18 yrs) 

if breed = Subadults [if random-float 1.0 > subadultSurvival [ die]] ;; subadult and adult survival 0.8474, ( 0.79-0.91 

95% CI, Chaloupka and Limpus 2005 S GBR, 18-35 years) 

if breed =  Neophytes [set timesHere timesHere + 1 if random-float 1.0 > adultSurvival [die]] 

if breed = Adults [set timesHere timesHere + 1 if random-float 1.0 > adultSurvival [die]] 



164 

 

 

stop 

end 

 

to Nesters? 

ifelse remigs = 0 [ 

   set reprostatus "skip-nester"  set remigs remigs + 1]   

[  

ifelse random-float 1.0 < BreedProb [set reprostatus "nester"] [set reprostatus "skip-nester" set remigs remigs + 1]] 

stop 

end 

 

to Hatchling_Production 

set newHatchlings round(ClutchSize * ClutchFrequency) * exp (rh * ( 1 - (countNesters / K_nesters))) ;; Ricker 

Function N(t+1) = (CS*CF) *exp(rh[1-(N(t)/K)])  Alt form of Logistic: X[t+1] = X[t] + r * X[t] * (1 – X[t] / K) 

density dependence if number hatchlings produce per capita 

   if newHatchlings < 0 [set newHatchlings 0]  

end   

  

to reproduce  

; ifelse reprostatus = "skip-nester"  

;   [ set remigs remigs + 1 stop ] 

   ;[ 

     hatch-Hatchlings newHatchlings [ ; inherited by new 

      set age 0 

      set color blue - 1 

      setxy random-xcor random-ycor  

      set reprostatus "skip-nester" 

      set reprostatus2 "skip-nester" 

      set times-nested 0 

      set remigs 0 

      set remigs_old remigs 

      ifelse AgeMatVariability [ 

      set AgeMaturity 19 + random-poisson AgeMatRand] [set AgeMaturity AgeMatA] ; 30 (median of 40 and 22) - 

17 + 1 = 14 Zug 2001 and Van Houtan et al. 2014 

      ifelse ClutchFreqVariability [ 

      set ClutchFrequency random-poisson ClutchFreqA] [set ClutchFrequency ClutchFreqA] ; ; mean 4-1 = 3; mean 

= 3.37304065, SD=1.254475826 (mark, with Sec Seasons >=4) 

      ifelse ClutchSizeVariability [ 

     set ClutchSize random-poisson ClutchSizeA] [set ClutchSize ClutchSizeA]  

           ] 

    set times-nested times-nested + 1 

    set remigs_old remigs 

    set remigs 0 

    stop ;]  

end 

 

to reproduceNeos  

  

;ifelse Climate > 0.9 [ ] 

;[ 

;set reprostatus "nester" 

      hatch-Hatchlings newHatchlings [ 

      set age 0 

      set color green - 1 

      setxy random-xcor random-ycor  

      set reprostatus "skip-nester" 
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      set reprostatus2 "skip-nester" 

      set times-nested 0 

      set remigs 0 

      set remigs_old remigs 

      ifelse AgeMatVariability [ 

      set AgeMaturity 19 + random-poisson AgeMatRand] [set AgeMaturity AgeMatA] 

      ifelse ClutchFreqVariability [ 

      set ClutchFrequency random-poisson ClutchFreqA] [set ClutchFrequency ClutchFreqA] ; ; mean 4-1 = 3; mean 

= 3.37304065, SD=1.254475826 (mark, with Sec Seasons >=4) 

      ifelse ClutchSizeVariability [ 

     set ClutchSize random-poisson ClutchSizeA] [set ClutchSize ClutchSizeA]  

                 ] 

    set times-nested times-nested + 1 

    set remigs_old remigs 

    set remigs 0 

    stop  

end 

 

 

to Monitor   

  set Monitored-Nesters no-turtles 

  set countNesters2 count Nesters ;turtles with [ reprostatus = "nester"] 

  set SampleSize round(q * countNesters2) 

  set Monitored-Nesters (n-of SampleSize Nesters) ;turtles with [reprostatus = "nester"] 

  ;set Monitored-Nesters (max-n-of SampleSize Nesters [ClutchFrequency]) ; Monitored-Nesters sampled based on 

turtles with greatest clutch frequency (better chance of being observed on nesting beach 

  ;set Monitored-Nesters (max-n-of SampleSize Nesters [Age]) ; Monitored-Nesters sampled based on oldest turtles  

(older turtles have great site fidelity/larger (easier to spot) better chance of being observed on nesting beach 

  set Nests sum [ClutchFrequency] of Nesters 

  set Monitored-Nests round(q * Nests) 

end  
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Appendix C. Supplemental Information to Chapter 4 
 

 
Figure C1. Frequency distributions for true and estimated adult abundance from the Cyclic 

Breeding Probability with random sampling treatment. Detection levels varied with a mean of 

0.1 (red), 0.5 (blue), and 0.9 (green). The diagonal line represents the 1:1 line between the true 

and estimated abundance. The axes were allowed to change between figures to improve 

visualization.  

 

 
Figure C2. Frequency distributions for true and estimated adult abundance from the Cyclic 

Breeding Probability with age-biased sampling treatment. Detection levels varied with a mean of 

0.1 (red), 0.5 (blue), and 0.9 (green). The diagonal line represents the 1:1 line between the true 

and estimated abundance. The axes were allowed to change between figures to improve 

visualization.  
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Figure C3. Frequency distributions for true and estimated adult abundance from the Cyclic 

Breeding Probability with clutch frequency-biased sampling treatment. Detection levels varied 

with a mean of 0.1 (red), 0.5 (blue), and 0.9 (green). The diagonal line represents the 1:1 line 

between the true and estimated abundance. The axes were allowed to change between figures to 

improve visualization.  

 

 
Figure C4. Frequency distributions for true and estimated adult abundance from the Low 

Severity Neritic Juvenile Impacts with random sampling treatment. Detection levels varied with 

a mean of 0.1 (red), 0.5 (blue), and 0.9 (green). The diagonal line represents the 1:1 line between 

the true and estimated abundance. The axes were allowed to change between figures to improve 

visualization.  
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Figure C5. Frequency distributions for true and estimated adult abundance from the Low 

Severity Neritic Juvenile Impacts with age-biased sampling treatment. Detection levels varied 

with a mean of 0.1 (red), 0.5 (blue), and 0.9 (green). The diagonal line represents the 1:1 line 

between the true and estimated abundance. The axes were allowed to change between figures to 

improve visualization.  

 

 
Figure C6. Frequency distributions for true and estimated adult abundance from the High 

Severity Neritic Juvenile Impacts with random sampling treatment. Detection levels varied with 

a mean of 0.1 (red), 0.5 (blue), and 0.9 (green). The diagonal line represents the 1:1 line between 

the true and estimated abundance. The axes were allowed to change between figures to improve 

visualization.  
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Figure C7. Frequency distributions for true and estimated adult abundance from the High 

Severity Neritic Juvenile Impacts with age-biased sampling treatment. Detection levels varied 

with a mean of 0.1 (red), 0.5 (blue), and 0.9 (green). The diagonal line represents the 1:1 line 

between the true and estimated abundance. The axes were allowed to change between figures to 

improve visualization.  

 

 

 
Figure C8. Frequency distributions for true and estimated adult abundance from the High 

Severity Neritic Juvenile Impacts with clutch frequency-biased sampling treatment. Detection 

levels varied with a mean of 0.1 (red), 0.5 (blue), and 0.9 (green). The diagonal line represents 

the 1:1 line between the true and estimated abundance. The axes were allowed to change 

between figures to improve visualization.  
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Figure C9. True and estimated adult and total population trend for Cyclic Breeding Probability 

treatments with random sampling. Estimated total population trend was drawn from observed 

nesters (J – R) or observed nests (BB – JJ). Population trend is shown for the population 

trajectories: impact (A – C, J – L, S – U, and BB – CC), recovery (D – F, M – O, V – X, EE – 

GG), and stable (G – I, P – R, Y – AA, HH – JJ). Trend duration was 5 (A,D, G, J, M, P, S, V, Y, 

BB, EE, and HH), 10 (B, E, H, K, N, Q, T, W, Z, CC, FF, and II) and 20 (C, E, I, L, N, R, U, X, 

AA, DD, GG, and JJ) years of monitoring. Estimated adult trend was drawn from observed 

nesters (A – I) or observed nests (S – AA). Detection levels varied with a mean of 0.1, 0.5, and 

0.9. The diagonal line represents the 1:1 line between the true abundance and the estimated 

abundance. Axis ranges across plots were allowed to vary to enhance visualization of the points.  
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Figure C10. True and estimated adult and total population trend for Cyclic Breeding Probability 

treatments with age-biased sampling. Estimated total population trend was drawn from observed 

nesters (J – R) or observed nests (BB – JJ). Population trend is shown for the population 

trajectories: impact (A – C, J – L, S – U, and BB – CC), recovery (D – F, M – O, V – X, EE – 

GG), and stable (G – I, P – R, Y – AA, HH – JJ). Trend duration was 5 (A,D, G, J, M, P, S, V, Y, 

BB, EE, and HH), 10 (B, E, H, K, N, Q, T, W, Z, CC, FF, and II) and 20 (C, E, I, L, N, R, U, X, 

AA, DD, GG, and JJ) years of monitoring. Estimated adult trend was drawn from observed 

nesters (A – I) or observed nests (S – AA). Detection levels varied with a mean of 0.1, 0.5, and 

0.9. The diagonal line represents the 1:1 line between the true abundance and the estimated 

abundance. Axis ranges across plots were allowed to vary to enhance visualization of the points.  
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Figure C11. True and estimated adult and total population trend for Cyclic Breeding Probability 

treatments with clutch frequency-biased sampling. Estimated total population trend was drawn 

from observed nesters (J – R) or observed nests (BB – JJ). Population trend is shown for the 

population trajectories: impact (A – C, J – L, S – U, and BB – CC), recovery (D – F, M – O, V – 

X, EE – GG), and stable (G – I, P – R, Y – AA, HH – JJ). Trend duration was 5 (A,D, G, J, M, P, 

S, V, Y, BB, EE, and HH), 10 (B, E, H, K, N, Q, T, W, Z, CC, FF, and II) and 20 (C, E, I, L, N, 

R, U, X, AA, DD, GG, and JJ) years of monitoring. Estimated adult trend was drawn from 

observed nesters (A – I) or observed nests (S – AA). Detection levels varied with a mean of 0.1, 

0.5, and 0.9. The diagonal line represents the 1:1 line between the true abundance and the 

estimated abundance. Axis ranges across plots were allowed to vary to enhance visualization of 

the points.  
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Figure C12. True and estimated adult and total population trend for the Low and High Severity 

Neritic Juvenile Impacts treatments with random sampling. Estimated total population trend was 

drawn from observed nesters (J – R) or observed nests (BB – JJ). Population trend is shown for 

the population trajectories: impact (A – C, J – L, S – U, and BB – CC), recovery (D – F, M – O, 

V – X, EE – GG), and stable (G – I, P – R, Y – AA, HH – JJ). Trend duration was 5 (A,D, G, J, 

M, P, S, V, Y, BB, EE, and HH), 10 (B, E, H, K, N, Q, T, W, Z, CC, FF, and II) and 20 (C, E, I, 

L, N, R, U, X, AA, DD, GG, and JJ) years of monitoring. Estimated adult trend was drawn from 

observed nesters (A – I) or observed nests (S – AA). Detection levels varied with a mean of 0.1, 

0.5, and 0.9. The diagonal line represents the 1:1 line between the true abundance and the 

estimated abundance. Axis ranges across plots were allowed to vary to enhance visualization of 

the points.  
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Figure C13. True and estimated adult and total population trend for the Low and High Severity 

Neritic Juvenile Impacts treatments with age-biased sampling. Estimated total population trend 

was drawn from observed nesters (J – R) or observed nests (BB – JJ). Population trend is shown 

for the population trajectories: impact (A – C, J – L, S – U, and BB – CC), recovery (D – F, M – 

O, V – X, EE – GG), and stable (G – I, P – R, Y – AA, HH – JJ). Trend duration was 5 (A,D, G, 

J, M, P, S, V, Y, BB, EE, and HH), 10 (B, E, H, K, N, Q, T, W, Z, CC, FF, and II) and 20 (C, E, 

I, L, N, R, U, X, AA, DD, GG, and JJ) years of monitoring. Estimated adult trend was drawn 

from observed nesters (A – I) or observed nests (S – AA). Detection levels varied with a mean of 

0.1, 0.5, and 0.9. The diagonal line represents the 1:1 line between the true abundance and the 

estimated abundance. Axis ranges across plots were allowed to vary to enhance visualization of 

the points.  
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Figure C14. True and estimated adult and total population trend for the Low and High Severity 

Neritic Juvenile Impacts treatments with clutch frequency-biased sampling. Estimated total 

population trend was drawn from observed nesters (J – R) or observed nests (BB – JJ). 

Population trend is shown for the population trajectories: impact (A – C, J – L, S – U, and BB – 

CC), recovery (D – F, M – O, V – X, EE – GG), and stable (G – I, P – R, Y – AA, HH – JJ). 

Trend duration was 5 (A,D, G, J, M, P, S, V, Y, BB, EE, and HH), 10 (B, E, H, K, N, Q, T, W, 

Z, CC, FF, and II) and 20 (C, E, I, L, N, R, U, X, AA, DD, GG, and JJ) years of monitoring. 

Estimated adult trend was drawn from observed nesters (A – I) or observed nests (S – AA). 

Detection levels varied with a mean of 0.1, 0.5, and 0.9. The diagonal line represents the 1:1 line 

between the true abundance and the estimated abundance. Axis ranges across plots were allowed 

to vary to enhance visualization of the points.  
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Figure C15. Adult population trend duration and the mean deviance from the true trend from 

randomly sampled nesters and nests in the Cyclic Breeding Probability treatments. The estimated 

adult trend was drawn from observed nesters (A – C) or observed nests (G – I). The estimated 

total population trend was drawn from observed nesters (D – F) or observed nests (J – L). 

Detection levels varied with a mean of 0.1, 0.5, and 0.9. Deviance is calculated as the difference 

of the true population trend minus the estimated population trend. A deviance of 0 indicates no 

difference between the true and estimated population trend. Errors bars indicate the standard 

deviation about the mean deviance. True and estimated population trend were calculated across 

5, 7, 10, 15, and 20 year durations. 
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Figure C16. Adult population trend duration and the mean deviance from the true trend from 

randomly sampled nesters and nests in the Low and High Severity Neritic Juvenile Impacts 

treatments. The estimated adult trend was drawn from observed nesters (A – F) or observed nests 

(M – R). The estimated total population trend was drawn from observed nesters (G – L) or 

observed nests (S – X). Detection levels varied with a mean of 0.1, 0.5, and 0.9. Populations 

were subjected to a low severity treatment where 10% year
-1

 of neritic juveniles were removed, 

or a high severity treatment where 50% year
-1

 of neritic juveniles were removed. Deviance is 

calculated as the difference of the true population trend minus the estimated population trend. A 

deviance of 0 indicates no difference between the true and estimated population trend. Errors 

bars indicate the standard deviation about the mean deviance. True and estimated population 

trend were calculated across 5, 7, 10, 15, and 20 year durations. 

 


