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Abstract
To better understand dietary requirements, trophic shifts, and trophic interactions of the threatened green turtle (Chelonia 
mydas), we conducted a comprehensive global review and literature tabulation (177 studies) reporting diets of individu-
als > 25 cm carapace length. We analysed those studies involving natural sites and healthy animals that reported relative 
proportions of all diet components (67 studies, 89 datasets at 75 sites, 13 geographic sub-regions, 3 oceans). We compared 
diets by sub-region and foraging site relative to four diet components, i.e., seagrass, macroalgae, terrestrial plants (including 
mangroves) and animal matter. To assess sea surface temperature (SST) as an environmental driver, values were extracted 
from satellite data (single year) and site-specific observations (study durations) and examined relative to diet composition. 
Satellite data indicated that at warmer sites with temperatures > 25 °C (≥ 6 months annually), diet was predominantly her-
bivorous (mean = 92.97%; SE = 9.85; n = 69 datasets). At higher latitude sites and in cold-water currents with SST < 20 °C 
(≥ 6 months annually), dietary animal matter featured prominently (mean = 51.47%; SE = 4.84; n = 20 datasets). Site-specific 
observations indicated that SST had a small but significant effect on contributions of animal matter (r2 = 0.17, P =  < 0.001) 
and seagrass (r2 = 0.24, P =  < 0.001) but not macroalgae and terrestrial plants. Our study presents the first quantitative evi-
dence at a global scale that temperature may be an important driver of omnivory, providing a new perspective on variations 
in green turtle diet, especially in light of global warming and climate change.

Introduction

Dietary studies are vital to understanding the ecologi-
cal role of organisms and their trophic interactions (Duffy 
et al. 2007), which for large marine vertebrates are often 
not well understood (Matich et al. 2011). Moreover, a better 
understanding of dietary requirements may help resource 
managers respond to shifts in trophic interactions between 
taxa (Brodeur et al. 2017) and, for sea turtles, more effec-
tively prioritize conservation zones and policies for foraging 
grounds (Hamann et al. 2010; Rees et al. 2016).

Due to numerous anthropogenic threats and population 
declines, the green turtle (Chelonia mydas) was previ-
ously listed as globally Endangered on the IUCN Red List 
(Seminoff 2004). Successful conservation strategies, such 
as protection of nesting turtles and nesting and foraging 
habitats, have led to long-term population recovery at many 
sites (Chaloupka et al. 2008; Mazaris et al. 2017; Silva et al. 
2017; Mortimer et al. 2020), resulting in IUCN downlisting 
of various green turtle subpopulations (e.g., Broderick and 
Patricio 2019). While sea turtles are particularly vulnerable 
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at their breeding grounds which are easily accessible to 
humans, they spend most of their lives at their foraging 
grounds (Hays et al. 2014). Green turtles can migrate vast 
distances across international borders between breeding and 
feeding grounds (Hays and Hawkes 2018; Hays et al. 2020) 
and maintain tight fidelity to their foraging grounds over 
successive migrations (Shimada et al. 2020). These com-
plex life history strategies highlight the need to improve 
understanding of green turtle foraging behaviour in differ-
ent regions and habitats (Klein et al. 2017).

Turtle diet composition can be assessed by a variety of 
techniques (Jones and Seminoff 2013). Traditional methods 
include direct observation using snorkel or SCUBA (Reisser 
et al. 2013), the analysis of gut contents from dead turtles 
(Mortimer 1981) and oesophageal lavage and faecal exami-
nation (Seminoff et al. 2002), while indirect biochemical 
approaches include stable isotope analysis (SIA) (Pearson 
et al. 2017). Modern technologies, such as remote videogra-
phy (Letessier et al. 2014), animal-borne cameras (Heithaus 
et al. 2002), autonomous underwater vehicles (Dodge et al. 
2018) as well as satellite tracking from nesting beach and 
subsequent in situ validation of diet at foraging locations 
(Esteban et al. 2018), have also been used to document the 
activities of turtles at their foraging habitats.

The green turtle has been associated with seagrass mead-
ows beginning with early observations in the Indian Ocean 
(Frazier 1971; Hirth et al. 1973) and long-term studies in 
the Caribbean (e.g., Bjorndal 1980; Mortimer 1981; Vander 
Zanden et al. 2013) that reported a herbivorous diet domi-
nated by seagrasses. This seagrass diet is thought to have 
the wider functional role of supporting seagrass ecosystem 
resilience (Christianen et al. 2019). Post-hatchling green tur-
tles are believed to spend their first 3–10 years, depending 
on the ocean basin (Reich et al. 2007; Arthur et al. 2008), 
in open ocean pelagic habitat and then typically recruit to 
neritic habitats where their diets tend to shift from omnivo-
rous to primarily herbivorous (see Jones and Seminoff 2013; 
Howell et al. 2016; Vélez-Rubio et al. 2016; Burgett et al. 
2018). Recruitment size (based on curved carapace length 
(CCL)) varies across populations from 20–25 cm in the 
western Atlantic (Bjorndal and Bolten 1988) to 30–35 cm 
in the Indo-Pacific (Limpus et al. 1994) and 30–45 cm in the 
southwestern Pacific (Arthur et al. 2008) and north central 
Pacific (Parker et al. 2011).

Seagrasses dominate the diet of green turtles at a range of 
sites across the Mediterranean (Margaritoulis and Teneketzis 
2003; Cardona et al. 2010; Karaa et al. 2012), Indian Ocean 
(Hasbún et al. 2000; Whiting et al. 2007; Stokes et al. 2019) 
and Pacific Ocean (Limpus and Reed 1985; Arthur et al. 
2009; Prior et al. 2016). At foraging sites where seagrass is 
absent or sparse, green turtle diet is supplemented or domi-
nated by macroalgae, for example, in Japan (Shimada et al. 
2014), Queensland, Australia (Garnett et al. 1985; Prior 

et al. 2016), Cocos-Keeling Islands (Whiting et al. 2014), 
Mexico (López-Mendilaharsu et al. 2005), Turkey (Özdilek 
et al. 2015), and Uruguay (Darré Castell et al. 2005). Ter-
restrial plant material, especially mangrove leaves and prop-
agules, can also feature prominently in green turtle diets 
at some sites (Arthur et al. 2009; Nagaoka et al. 2012). 
Although green turtles are primarily herbivorous, reports of 
a wide ranging diet of seagrass, marine algae and inverte-
brates (Jones and Seminoff 2013) include purposely ingested 
animal matter, such as gelatinous macrozooplankton (e.g., 
scyphozoan jellyfish and salps), sponges, molluscs and fish 
(Mortimer 1981; Bjorndal 1997; Burkholder et al. 2011; 
Fukuoka et al. 2019; Piovano et al. 2020).

Studies in the eastern Pacific (Etnoyer et al. 2006), the 
Mediterranean (Cardona et al. 2010) and in the southwestern 
Atlantic (Santos et al. 2015) have suggested a relationship 
between green turtle omnivory levels and sea surface tem-
perature (SST). Nevertheless, regional variations in diet, and 
the possible role of SST as a driver of these variations have 
not been examined at a global scale. Here, we investigate the 
diet of green turtles greater than 25 cm CCL (i.e. beyond the 
presumed 3–10 year-long post-hatchling pelagic stage) in 
various parts of the world. Specifically, we (1) reviewed lit-
erature to assess variation and patterns in the diets of imma-
ture and adult green turtles from foraging sites around the 
globe; (2) analysed the relationship between SST and diet 
globally to assess SST as a potential driver of omnivory; and 
(3) examined other possible drivers of green turtle diet that 
we encountered in the literature. The results of our study 
will provide a better understanding of diet variation across 
oceans and help guide green turtle conservation management 
especially in the context of global warming.

Materials and methods

Global review of green turtle diet

We conducted a literature search in April 2020 for papers of 
‘All document types’ and ‘All languages’ on Web of Science 
using the search terms: ALL = (green turtle* OR Chelonia 
mydas) AND ALL = (diet* OR forag*) and Google Scholar 
using the search terms: TOPIC (‘green turtle*’ OR ‘Chelo-
nia mydas’) AND (‘diet*’ OR ‘forag*’). Literature citations 
in the most recent and comprehensive articles located were 
then checked for studies of green turtle diet; in many cases, 
these involved grey literature that might have been missed by 
Web of Science or Google Scholar searches. We worked our 
way back through historical literature in this manner until no 
more studies reporting diet could be found.

To produce our global review of green turtle diet, 
we excluded studies of green turtles with carapace 
length < 25 cm CCL (e.g., Boyle and Limpus 2008) on the 
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assumption that they represented the 3–10-year-old post-
hatchling pelagic life stage. We also excluded diet studies 
if they did not report the relative proportion of all dietary 
components (e.g. Russell and Balazs 2009) or were from 
a large-scale pelagic fishery with unknown foraging loca-
tion (e.g., Parker et al. 2011; Wedemeyer-Strombel et al. 
2015). Studies of turtles that were diseased or stranded 
were excluded due to potential bias in diet as were those 
of unknown foraging location (e.g., Riosmena-Rodriguez 
et  al. 2011; Souza 2019). We excluded diet studies of 
captive or artificially fed turtles (e.g., Monzón-Argüello 
et al. 2018), along with data describing the diets of gravid 
female green turtles which can differ significantly from 
those of males, non-breeding females and immature tur-
tles even at shared foraging habitat (Stokes et al. 2019). 
Where multiple studies from the same site utilised the 
same dataset, the most detailed study was included (e.g., 
Arthur et al. 2009; not Arthur et al. 2006). Excluded stud-
ies were compiled and reasons for their exclusion provided 
(Online Resource 1 Table S2).

Where there was no significant difference in diet between 
multiple sites in one study, data were presented for a cen-
trally located site (e.g., Arthur and Balazs 2008; Stokes et al. 
2019). Many of the studies we reviewed did not distinguish 
size classes, and did not report diet data for immature and 
adult individuals separately, especially when both occurred 
together at a benthic foraging site (e.g., Forbes 1996; Read 
and Limpus 2002; Prior et al. 2016). We, therefore, pooled 
our findings on the diet for both immature (> 25 cm CCL) 
and adult breeding turtles.

In our global review, we recorded the methodologies 
employed by each study, i.e., gut content analysis, oesopha-
geal lavage, SIA, etc., and tabulated the proportions of indi-
vidual diet items encountered. We converted results from 
animal-borne camera studies to diet proportion by dividing 
the number of bites or feeding events for a diet item (e.g. 
seagrass) by the total number of bites or feeding events for 
all diet items. We assigned each type of diet item to one of 
six categories. The four key nutritional categories were: sea-
grass, macroalgae, terrestrial plants (e.g., fruits and leaves 
of mangroves Avicennia marina, A. schaueriana, A. germi-
nans, Rhizophora mangle and saltmarsh Spartina alterni-
flora; leaves of Ficus spp, Hibiscus spp, Ochroma spp), and 
animal matter. The fifth and sixth categories were anthro-
pogenic debris (e.g., plastic fibre) and ‘other’. The category 
‘other’ was not always defined in studies but, where defined, 
included substrate (sand, shell, stone), very digested mate-
rial, unidentifiable material and natural debris (e.g., bird 
feathers, wood fragments, etc.). We overlaid green turtle diet 
composition as defined by the six categories onto a world 
map shapefile (Made with Natural Earth) using QGIS v3.0, 
including the available global seagrass distribution (UNEP-
WCMC and Short 2018) for reference.

We organized the global diet studies into geographic sub-
regions (Online Resource 1 Tables S1–2) based on maps 
produced by Wallace et al. (2010) to define the global dis-
tribution of regional management units (RMUs) of green 
turtles. An RMU comprises a breeding unit of turtles above 
the level of the nesting populations but below the level of 
species within a sub-region, and the RMU maps roughly 
indicate the distribution of animals belonging to an RMU 
breeding unit. For our purposes, the geographic bounda-
ries defined by these RMU maps (excluding some areas of 
overlap) provided objective criteria with which to organize 
and then compare global studies of turtle diet by sub-region, 
including all diet data collected for both adults and immature 
turtles within each sub-region. Our 13 sub-regions corre-
sponded with the following 13 map-defined RMUs (Wallace 
et al. 2010): Pacific North Central, Pacific East, Atlantic 
North West, Atlantic South West, Atlantic East, Mediter-
ranean, Indian South West, Indian North West, Indian North 
East, Indian South East, Pacific South West, Pacific South 
Central, and Pacific North West. Figure 1a provides a map 
of the 13 sub-regions and their abbreviations.

Relationship between green turtle diet and SST

We assessed the relationship between green turtle diet and 
SST at two spatial resolutions. First, we used a global scale 
satellite-sourced SST dataset to present a visual overview. 
We then used in situ surface observations of SST from the 
International Comprehensible Ocean–Atmosphere Data Set 
(ICOADS) to obtain higher-resolution coastal SST data for 
each foraging site for fine-scale analysis.

Global SST overview

To produce a visual global overlay map of SST at each of the 
study sites included in this study, global day–night monthly 
SST averages, during a single year, derived from the 
AVHRR Pathfinder (Version 5, 4 km) SST cloud screened 
dataset (Phillips et al. 2012) were downloaded and projected 
on ArcMap version 10.5.1. Although accuracy and precision 
of satellite-sourced SST at the coastline is lower than SST 
measurements made in situ (Brewin et al. 2018), this dataset 
was used for the global overview as it provides the long-
est, accurate and highest-resolution SST climate data record 
for analysis of global SST (NCAR 2014). The dataset was 
not available for the entire time series. We selected the year 
1993 for two reasons: it represents the midpoint of the sam-
pling period for the diet studies (1971–2016); and it lacked 
El Niño and La Niña events (NOAA 2020). Quarterly peri-
ods (Jan–Mar, Apr–Jun, Jul–Sep, Oct–Dec) were selected to 
represent seasonal variation in temperature at different sites.
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Foraging site SST

We extracted in situ observations of SST data for the 1° by 
1° pixel around each foraging site from ICOADS (NCAR 
2015). We obtained data from the Enhanced ICOADS 
Monthly Summary Release 3.0 at the 1-degree spatial reso-
lution for the 12 months, from January to December that 
coincided with the sampling period of each respective study, 
e.g., if sampling took place in 2005 and 2006, then SST 
data were included from January 2005 through December 
2006. There are fewer sites included in the analysis of SST 
at foraging sites than in the global SST overview. This is 
because we avoided potential bias due to under-sampling by 
excluding those seven datasets with < 10 SST observations 
per month. Some of these datasets were for the same site 
and three sites were excluded from further analysis because 

SST data were unavailable, i.e., South Caribbean Nicaragua, 
Torres Strait Australia, and Tokelau. Multiple diet composi-
tion datasets existed across several sampling periods at some 
sites, e.g., Bahia de los Angeles, Mexico and Shark Bay, 
Australia, and are included in the analysis. We calculated 
the mean annual SST, the maximum annual SST and the 
minimum annual SST for each site.

Data analysis

The average contribution of each of the six major dietary 
components of green turtle diet (seagrass, macroalgae, 
terrestrial plants, animal matter, other, and anthropogenic 
debris) was compared using a Kruskal–Wallis rank-sum 
test. To compare diet across sub-regions, a Dunn’s (1964) 
test was used to calculate multiple comparison p-values 

Fig. 1  Comparison of green turtle diet composition across the globe. 
a 13 geographic sub-regions, based on maps of the Chelonia mydas 
RMUs  (adapted from Wallace et  al. 2010), were used to compare 
diet composition. Moving from west to east these include: Pacific 
North Central (Pacific NC), Pacific East (Pacific E), Atlantic North 
West (Atlantic NW), Atlantic South West (Atlantic SW), Atlantic 
East (Atlantic E), Mediterranean (Med), Indian South West (Indian 
SW), Indian North West (Indian NW), Indian North East (Indian 
NE), Indian South East (Indian SE), Pacific South West (Pacific SW), 
Pacific North West (Pacific NW), Pacific South Central (Pacific SC). 
b The proportions of contribution made by each of six categories of 
diet items recorded in 89 datasets at 75 sites are shown by segments 
of the pie charts. The term ‘Other’ is not always defined and includes 

substrate, very digested material, and natural debris (e.g., feathers). 
Methods used to study diet are represented by coloured lines—i.e., 
gut content analysis (black), oesophageal lavage (blue), SIA (orange), 
mouth content (purple), faecal examination (pink) and animal-borne 
camera (red) studies. Green dots indicate known seagrass observa-
tion data points (Source: UNEP-WCMC and Short, 2018, see Online 
Resource 1 Fig. S1–S4 for fine-scale maps). Numbers indicate source 
literature (see Online Resource 1 Table  S1 for study site, analytical 
method, diet group and results), and break-down by sub-region as 
follows: Pacific NC (1–2), Pacific E (3–16), Atlantic NW (17–30), 
Atlantic SW (31–38), Atlantic E (39), Med (40–43), Indian NW (44–
47), Indian SW (48), Indian NE (49), Indian SE (50–52), Pacific SW 
(53–63), Pacific NW (64–65), and Pacific SC (66–67)
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adjusted with the Benjamini and Hochberg (1995) method. 
For the foraging site SST analysis, dietary component data 
were arcsine-square-root-transformed. Linear regression 
was used to explore the relationship between diet content 
data and SST at foraging sites. Figures are presented show-
ing untransformed (Figs. 1–3) or back-transformed data 
(Fig. 4; Online Resource Fig. S5) for ease of interpretation. 
Statistical analyses were performed using R (R Core Team 
2017). Mean ± SE values are presented unless otherwise 
indicated. The significance level of all statistical tests was 
set at α < 0.05.

Results

Global review of green turtle diet

Of the 177 articles examined, 67 articles with 89 datasets 
describing diet composition of green turtles at 75 sites 
around the world met the criteria for inclusion in our review 
(Fig. 1; Online Resource Table S1). An additional 110 diet 
studies were excluded from further analysis for the following 
reasons: unspecified diet composition (n = 40) or foraging 
location (n = 7); sampling of stranded dead/diseased individ-
uals (n = 28), captive turtles with artificially fed diet (n = 11), 
or nesting females (n = 3); focus on ingestion of anthropo-
genic debris (n = 17); turtles below minimum carapace size 
(n = 2); or duplicate dataset (n = 2). See Online Resource 1 
Table S2 for study details and exclusion reasons.

The datasets in studies that met our criteria spanned 
13 sub-regions in 3 oceans and 1 sea: Pacific N Central 
(Hawaii) (n = 6), Pacific E (off North, Central and South 
America) (n = 18), Atlantic NW (off North and Central 
America, including Caribbean) (n = 19), Atlantic SW (off 
South America) (n = 9), Atlantic E (São Tomé Island) 
(n = 2), Mediterranean (n = 5), Indian NW (Arabian Pen-
insula and India) (n = 4), Indian SW (Seychelles) (n = 1), 
Indian NE (Cocos-Keeling) (n = 1), Indian SE (Western 
Australia) (n = 5), Pacific SW (Eastern Australia) (n = 13), 
Pacific NW (Japan) (n = 4) and Pacific S Central (Fiji and 
Tokelau) (n = 2). The relative prominence of the following 
four key nutritional categories was reported across sites and 
is considered in our analysis: seagrass, macroalgae, terres-
trial plants, and animal matter. The amount of anthropogenic 
debris in the diet also varies between sites. Nevertheless, 
some patterns emerge (Figs. 1 and 2). An expanded version 
of Fig. 1 (Online Resource 1 Figs. S1–4) shows details of 
regional seagrass distribution as well as contribution of the 
six categories of diet items.

Seagrass dominant. Seagrass contribution to diet 
is greatest in the following sub-regions: Indian SW 
(mean = 95.0%; n = 1; Stokes et  al. 2019), Indian NW 
(mean = 83.3%; SE = 9.6; n = 4; e.g., Hasbún et al. 2000), 

Indian NE (mean = 65.1%; n = 1; Whiting et al. 2014), 
Pacific SW (mean = 59.3%; SE = 10.4; n = 13; e.g., Fuentes 
et al. 2006; Prior et al. 2016), Atlantic NW (mean = 57.5%; 
SE = 8.2; n = 19; e.g., Mortimer 1981; Stringell et al. 2016) 
and Mediterranean (mean = 46.0%; SE = 19.4; n = 5; e.g., 
Karaa et al. 2012). All studies that recorded no seagrass 
(or virtually none) in the diet are from regions with lim-
ited documented seagrass distribution (e.g., Pacific E and 
Atlantic SW) (Fig. 1; Online Resource 1 Figs. S1–S4).

Macroalgae dominant. Macroalga is consumed most 
abundantly in the following sub-regions: Pacific N Cen-
tral (mean = 96.0%; SE = 1.9; n = 6; e.g., Arthur and Bal-
azs 2008; Balazs et al. 1987), Atlantic E (mean = 62.5; 
SE = 7.5; n = 2; e.g., Hancock et al. 2018), Atlantic SW 
(mean = 59.5%; SE = 13.9; n = 9) especially tropical areas 
(e.g., Reisser et al. 2013), Pacific S Central (mean = 58.5; 
SE = 41.5; n = 2; e.g., Piovano et al. 2020; Balazs 1983), 
Pacific NW (mean = 52.5%; SE = 9.4; n = 4), Indian SE 
(mean = 51.7%; SE = 14.2; n = 5; e.g., Shimada et al. 2014; 
Fukuoka et al. 2016), Pacific E (mean = 49.4%; SE = 7.7; 
n = 18; e.g. Seminoff et al. 2002; Arthur and Balazs 2008; 
Carrión-Cortez et al. 2010; Quiñones et al. 2010), and 
Atlantic NW (mean = 34.1%, SE = 7.7; n = 19) especially 
high in temperate areas (e.g., Holloway-Adkins and Han-
siak 2017).

Seagrass and Macroalgae. Nearly equal proportions of 
both seagrass and macroalgae have been recorded in diets in 
the following sub-regions: Pacific E (López-Mendilaharsu 
et al. 2005), Atlantic NW in the Gulf of Mexico (Howell 
et al. 2016), Indian SE at Cocos (Keeling) islands (Whiting 
et al. 2014), and Pacific SW at Torres Strait (Andre et al. 
2005).

Terrestrial plants. Terrestrial plant contribution is high-
est in the following sub-regions: Atlantic SW (mean = 8.3%; 
SE = 4.7; n = 9) especially at estuarine sites, e.g., from 10% 
in Argentina (González Carman et al. 2014) to 35% in Brazil 
(Nagaoka et al. 2012); Pacific E (mean = 3.7%; SE = 2.3; 
n = 18) especially at estuarine sites (e.g., 38% in Colom-
bia, Sampson et al. 2018), and where mangrove fruits and 
leaves featured (e.g., 5% in the Galapagos Islands, Carrión-
Cortez et al. 2010; 3.2% in Mexico, López-Mendilaharsu 
et al. 2005); and Pacific SW (mean = 3.5%; SE = 3.0; n = 13) 
where mangrove cotyledons, leaves and fruit formed 40% of 
the diet in Shoalwater Bay, Queensland Australia (Limpus 
and Limpus 2000).

Animal matter. Animal matter featured to some degree 
in all sub-regions, especially the following: Pacific S Cen-
tral pelagic sites (mean = 35%; SE = 35; n = 2; e.g., Piovano 
et al. 2020); Pacific E neritic sites (mean = 30.9%; SE = 7.2; 
n = 18; e.g., Amorocho and Reina 2007; Jiménez et al. 2017; 
Quiñones et al. 2010; Paredes 2015); Mediterranean neritic 
sites (mean = 31.9%; SE = 19.7; n = 5; e.g., Lazar et al. 2010; 
Karaa et al. 2012); Indian SE neritic sites (mean = 20.7%; 
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SE = 9.3; n = 5; e.g., Burkholder et al. 2011; Thomson et al. 
2018); and at Atlantic E upwelling sites (mean = 25%; 
SE = 5; n = 2; e.g., Hancock et al. 2018).

A comparison of the proportion of seagrass consumed 
by green turtles between sub-regions showed significant 
and major differences (Kruskal–Wallis test, H12 = 45.17, 
p < 0.001). Multiple comparisons showed a significant differ-
ence between green turtle diet recorded in the Atlantic NW 
and Atlantic SW (p = 0.02), Atlantic SW and Indian NW 
(p = 0.03), Atlantic NW and Pacific E (p = 0.002), Indian 
NW and Pacific E (p = 0.008), Atlantic NW and Pacific 
N Central (p = 0.01), Indian NW and Pacific N Central 
(p = 0.01), Atlantic SW and Pacific SW (p = 0.02), Pacific 
E and Pacific SW (p = 0.002), Pacific N Central and Pacific 
SW (p = 0.01). The amount of anthropogenic materials 

present varied amongst sites but was most abundant in the 
Pacific Ocean (Pacific E and Pacific NW) (Fig. 1; Fig. 2; 
Online Resource 1 Table S1).

Relationship between green turtle diet and SST

Global SST overview

A global comparison of principal diet components (plant-
dominated diet vs omnivorous diet) with seasonal SST pro-
vides an indication of the relative importance of SST on diet 
at different sites (Fig. 3). Our findings suggest that at cooler 
sites where SST is < 20 °C for ≥ 6 months each year, ani-
mal matter in the diet is always > 20% (range = 20.3–89.5%; 
mean = 51.48 ± 4.84%; n = 14 sites; n = 20 datasets). These 

Fig. 2  Comparison of the rela-
tive abundance of food items 
in green turtle diet across the 
globe: seagrass, macroalgae, 
terrestrial plants, animal matter 
and anthropogenic debris. The 
diet item percentages were 
collated from 89 datasets at 75 
sites across 13 sub-regions for 
sea turtles (see Online Resource 
Table S1 for study site, analyti-
cal method, diet group results, 
source literature). Bold horizon-
tal lines indicate mean, boxes 
delineate the upper and lower 
quartiles and whiskers define 
the data’s range. Outliers are 
plotted as separate points
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areas are at higher latitudes (e.g., California USA, Argen-
tina and Croatia), close to cold-water currents or upwell-
ings (e.g., Colombia and Peru) or in areas of overlapping 
climate zones (e.g., Brazil). Generally, at warmer sites where 
SST ≥ 25 °C for 9–12 months, green turtle diet is almost 
always ≤ 20% animal matter and is dominated by plant 

matter (mean = 92.97 ± 1.19%; range = 45.5–100%; n = 57 
sites; n = 69 datasets).

A few sites around the world are exceptions to the trend of 
decreasing animal matter with increasing SST. Contradict-
ing diet preference (see Online Resource Table S1) existed 
at four sites, each in a different sub-region (Atlantic NW, 
Atlantic E, Mediterranean and Indian SE). These four sites 

Fig. 3  The importance of plant or animal content in green tur-
tle diet is related to sea surface temperature (SST). Generally, at 
higher latitudes and in cold-water currents where SST is < 20 °C for 
at least two seasons, animal matter in the diet is > 20% (black cir-
cles; mean = 51.47%; SE = 4.84; n = 14 sites); whereas at warmer 
sites where SST > 25 °C for at least two seasons, green turtle diet is 

dominated by seagrass, macroalgae and mangroves (green circles; 
mean = 92.97%; SE = 9.85; n = 57 sites). Both plant and animal mat-
ter are important components at a small number of sites (green cir-
cles outlined by black, n = 4 sites). SST temperatures from the year 
1993 are at the midpoint of the study time series (1971–2016; Online 
Resource Table S1). SST (AVHRR) data source: Phillips et al. 2012

Fig. 4  Sea surface tempera-
ture (SST) has a small effect 
on green turtle diet at foraging 
grounds: a lower proportion 
of animal matter is present in 
the diet of turtles at sites with 
higher SST (r2 = 0.16, t = − 3.7, 
F1,72 = 13.32, P =  < 0.001). SST 
is shown as maximum annual 
temperature recorded during the 
sampling year(s) of 82 datasets 
from 72 sites in the Atlantic, 
Indian and Pacific Oceans 
and Mediterranean Sea. SST 
(ICOADS) data source: NCAR 
2015
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(i.e., Dry Tortugas Florida USA, São Tomé Island, Gulf of 
Gabes Tunisia, and Shark Bay Western Australia) are rep-
resented by green circles with a black outline (the green 
circle indicates a plant-dominated diet and black outline 
indicates > 20% animal matter) (Fig. 3). Among sites with 
high SST and expected plant-dominated diet, one notable 
exception, indicated by a black ring, is Fiji (Pacific S Cen-
tral) where diet is dominated by 71% animal matter (Piovano 
et al. 2020). Two exceptions to an expected omnivorous diet 
at sites with low SST values are the Sanriku coast of Japan 
(Pacific NW) and Galapagos Ecuador (Pacific E), both indi-
cated by green circles (Fig. 3).

Foraging site SST

Analysis of fine-scale SST data from 72 foraging sites shows 
a similar pattern to that provided by the global SST over-
view, with a small but significant (p =  < 0.001) relationship 
between SST and the proportion of animal matter in the diet 
(n = 82 datasets). The contribution of animal matter in the 
diet tended to increase at cooler temperatures (Fig. 4; Online 
Resource 1 Fig. S5) and the resulting relationship between 
the percent animal matter and maximum SST was small but 
significant (r2 = 0.16, t = − 3.7, F1,72 = 13.32, p =  < 0.001). 
Conversely, the contribution of seagrass to the diet tended 
to increase with warmer temperatures (Online Resource 1 
Fig. S5). Maximum sea surface temperatures had a small 
but significant relationship to percent seagrass in the diet 
(r2 = 0.22, t = 4.5, F1,72 = 20.6, p =  < 0.001). We also found 
a small effect of mean SST on percent animal matter and 
seagrass in the diet, and a small effect of minimum SST on 
percent seagrass in the diet (p < 0.05 in all cases; see Online 
Resource 1 Fig. S5). There was no effect of SST on con-
tribution of either macroalgae or terrestrial plants (notably 
mangrove) to the diet (Online Resource 1 Fig. S5).

Discussion

Considerable variability in green turtle diet exists around 
the world, across oceans and within foraging grounds. Our 
review has captured much of the literature to tease apart spa-
tial variation in green turtle diet and our analysis shows SST 
to be a driver of omnivory. At most foraging sites included in 
this study, as expected, green turtles were primarily herbivo-
rous with three categories of plant material featuring in the 
diet: seagrass predominating at sites where it was abundant; 
macroalgae where seagrass is relatively sparse or absent; and 
terrestrial plant material (especially mangrove leaves and 
propagules, but also other terrestrial species) particularly in 
estuarine areas. Omnivory also featured at some sites.

Green turtle foraging strategies range from nearly total 
herbivory at some neritic sites (Stokes et al. 2019) to oceanic 

omnivory (Turner Tomaszewicz et al. 2018), and at some 
sites a high degree of omnivory even after settling at neritic 
habitats through adulthood (Vélez-Rubio et al. 2016). Some 
green turtles may shuttle between neritic and oceanic envi-
ronments, as in Fiji (Piovano et al. 2020). This is in contrast 
to the previously documented and often assumed one-way 
ontogenetic habitat transition (di Beneditto et al. 2017). 
Drivers of green turtle diet discussed in the literature include 
SST, characteristics of the gut biome, prey availability, size 
classes of turtles and impacts of anthropogenic activities.

SST as a driver of variation in green turtle diet

Our global overview and foraging site-specific analyses 
showed a relationship between warmer temperatures and a 
seagrass diet, and lower temperatures and a diet comprising 
large amounts of animal matter, especially macrozooplank-
ton. We conclude that green turtle omnivory may be partly 
driven by water temperature, and we present the first quanti-
tative evidence that temperature may be an important driver 
of diet in green turtles at a global scale, especially where 
the diet includes gelatinous macrozooplankton (in particular, 
jellyfish and salps). Gelatinous macrozooplankton featured 
most prominently at oceanic and extreme-latitude sites in 
the Pacific and Atlantic, ranging from 40% in the Pacific 
NW (Fukuoka et al. 2016); 30–73% in the oceanic Pacific 
NC (Parker et al. 2011; Wedemeyer-Strombel et al. 2015); 
38–72% along the Pacific E coastline (Seminoff et al. 2006; 
Amorocho and Reina 2007; Quiñones et al. 2010; Lem-
ons et al. 2011; Jiménez et al. 2017); and 40–59% in the 
Atlantic SW (Bugoni et al. 2003; González Carman et al. 
2014). A feature shared by all these sites appears to be much 
cooler water temperatures (< 20 °C) during all or part of the 
year. Previous studies (e.g., Etnoyer et al. 2006; Cardona 
et al. 2010; Santos et al. 2015) have shown that green tur-
tle omnivory levels are influenced by SST, but ours is the 
first study to quantify this relationship on a global scale and 
highlight differences in green turtle diets in different regions.

Two patterns of geographic distribution of a gelatinous 
macrozooplankton diet associated with cooler water tem-
peratures are apparent. One appears to correlate with higher 
latitudes and cooler temperatures (e.g., Pacific E, Pacific SC, 
Pacific NW, southern Atlantic SW, northern Atlantic NW, 
and Shark Bay Australia in Indian SE). The second may be 
mediated by global patterns of the major warm and cold oce-
anic currents. Warm ocean currents tend to flow away from 
the equatorial region on the western side of ocean basins, 
and cold ocean currents flow towards the equator on the east-
ern side of ocean basins. It follows that cool currents may 
account for the patterns of high macrozooplankton consump-
tion that appear to be associated with the California Current 
(off California and Baja California), the Peru Current (off 
Ecuador, Peru and Columbia), and the Benguela Current 
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(off Mauritania). Water temperature is known to affect the 
abundance and distribution of food resources in the oceans 
(O’Connor et al. 2007). At cooler sites, where estimated lev-
els of carnivory are typically > 20%, there is high contribu-
tion of gelatinous macro-zooplankton. While latitudinal pat-
terns of gelatinous plankton abundance are not well known, 
there is some evidence that their abundance may increase at 
higher latitudes. For example, the leatherback turtle (Dermo-
chelys coriacea), which feeds almost exclusively on gelati-
nous plankton, breeds on tropical beaches but often migrates 
to forage at high latitudes (e.g. Fossette et al. 2014). A recent 
review of taxa feeding on gelatinous plankton, showed many 
examples of pelagic predators from higher latitudes (Hays 
et al. 2018), including coho salmon (Oncorhynchus kisutch), 
larval/juvenile sablefish (Anoplopoma fimbria) and Cassin’s 
Auklet (Ptychoramphus aleuticus) in waters off Vancouver 
Island in the northern Pacific E (Mackas et al. 2007). While 
there was a significant relationship between SST and the per-
cent of animal matter in the diet, there was still considerable 
variability in this relationship, suggesting that other factors, 
in addition to SST, likely also drive the diet at individual 
sites. Given that we found relatively few diet studies at sites 
with cooler temperatures (10–20 °C, e.g., Brazil), the role 
of SST may become clearer once more diet studies are con-
ducted at such cooler sites.

Besides gelatinous plankton, there are other animal-
based sources of diet that can be grazed from the benthos. 
For example, neritic habitats in Fiji (Pacific SC) support a 
green turtle diet dominated by herbivorous (e.g., sea urchin 
Tripneustes gratilla) and carnivorous (e.g., cone shell Conus 
ebreus) invertebrates as well as fish (Piovano et al. 2020). 
Larger turtles of post-recruitment size and sizes typical of 
the benthic habitat have been observed in oceanic habitats 
(Turner Tomaszewicz et al. 2018); and it is possible that 
turtles employ shifts in foraging behaviour during multiple 
transitions between the neritic and oceanic habitats of Fiji 
(Piovano et al. 2020).

Because we used SST data at a relatively course spatial 
scale, our study would not have identified variations or 
anomalies in water temperature at the level of the relatively 
small home ranges that foraging green turtles typically 
occupy (Christiansen et al. 2017). Likewise, the relation-
ship between green turtle diet and mean SST value derived 
from the multi-decadal study period is unlikely to capture 
changes in SST values throughout that time period, nor 
shifts in green turtle diets on the scale reported by Bell et al. 
(2019). SST data at a finer spatial and temporal scale, par-
ticularly from the shallow nearshore habitats where green 
turtles typically forage, might shed further light on the role 
of SST in driving diet.

At some foraging sites, temperature does not always pre-
dict diet composition. In Japan, low SST values would pre-
dict an omnivorous diet, as it does at Shikoku, Japan, where 

39% animal matter is reported in the diet (Shimada et al. 
2014). But, at an even higher latitude with cooler tempera-
tures on the Sanriku Coast of Japan, the diet comprised only 
4–9.6% animal matter in similarly sized turtles (Fukuoka 
et al. 2016).

Although not the focus of our review, many other envi-
ronmental effects and limits influence the distribution of 
food species, such as water depth, substrate type, water 
clarity, and abundance of other predators that feed on prey 
consumed by green turtles. Temperature is not always a 
good predictor of diet, but other variables, such as oceano-
graphic features (Cox et al. 2018) and availability of food 
items, could be (e.g., Goldbogen et al. 2015). Improving 
our understanding of how food availability at foraging sites 
drives foraging behaviour remains a critical question (Hays 
et al. 2016).

Some other drivers of variation in green turtle diet

Our review suggests that, in addition to SST, other drivers 
may influence green turtle foraging strategies across and 
within regions. These drivers may include a combination of 
factors, such as gut microflora, the influence of habitat on 
spatial and seasonal prey availability, and the size class of 
turtles. Moreover, there may be synergism between drivers.

Gut microflora

The relationship between water temperature and diet com-
position may be driven to some extent by physiological 
factors. If the gut microflora that enables turtles to digest 
plant material does not function efficiently at lower tem-
peratures, turtles may opt to feed on relatively more animal 
material (Amorocho and Reina 2007). In the literature, spa-
tial variation in green turtle diet has often been explained 
by a combination of environment (e.g., food availability, 
different habitats) and characteristics of the gastrointes-
tinal microbiome which are influenced by diet (Bjorndal 
1997; Price et al. 2017). For example, seagrass Thalassia 
testudinum dominates the Caribbean benthos and is the 
dominant food item (e.g., Stringell et al. 2016); while in the 
Galapagos (Carrión-Cortez et al. 2010) and at Heron Reef 
Australia (Forbes 1996), the benthos is dominated by mac-
roalgae which comprise most of the diet. Recent advances 
in knowledge indicate, however, that regardless of diet, the 
microbiome in green turtles contains the same bacterial 
phyla although bacterial community composition changes 
over time in response to diet (Ahasan et al. 2017; Campos 
et al. 2018; Bloodgood et al. 2020).

At Shark Bay, Australia, even though seagrass habitat 
dominates, green turtles primarily assimilate energy from 
macroalgae and gelatinous macrozooplankton. Various 
hypotheses were proposed by Burkholder et al. (2011) to 
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explain this anomaly including: that macroalgae and gelati-
nous macroplankton are more palatable than the dominant 
Amphibolis antarctica seagrass; that an individual’s diet 
depends on its intestinal microflora causing a preference for 
either seagrass or algal dominated diets; or that a high risk 
of predation by sharks interferes with feeding behaviour. 
Certainly, Shark Bay appears to be an unusual site where 
green turtles are highly omnivorous and individuals special-
ise on varying combinations of seagrasses, macroalgae and 
invertebrates (Thomson et al. 2018).

Prey availability

We expect food availability will ultimately influence diet 
composition, with sea temperature providing a proximal 
influence on diet through its role on prey availability. For-
aging strategy (commonly described by the Optimal For-
aging Theory) predicts that individuals adjust their move-
ments according to the spatial distribution of their prey so 
that a more productive environment should lead to more 
specialised diet (MacArthur and Pianka 1966). In this way, 
diet composition variation and distribution has been linked 
to availability of food (or prey) across marine taxa, includ-
ing seabirds, marine mammals and reptiles (e.g., León and 
Bjorndal 2002; Pinaud et al. 2005; Hays et al. 2006; Womble 
and Sigler 2006).

A recent review of intraspecific variation in trophic 
ecology of sea turtles using SIA confirms the versatility in 
trophic ecology that has been suggested for green turtles 
(Figgener et al. 2019), emphasising the cryptic and con-
trasting nature of diets in adult green turtle populations. 
Variations in upwelling processes in the Galapagos Islands 
(Pacific E), affect algal composition leading to higher diver-
sity of red algae in diet at some sites (Carrión-Cortez et al. 
2010). In Hawaii (Pacific NC), differences in the relative 
availability of seagrass and macroalgae are apparent over 
short distances. For example, green turtles consumed both 
seagrass and macroalgae at Kāne’ohe Bay, O’ahu but only 
macroalgae at other sites amongst the six main islands of 
Hawaii (Arthur and Balazs 2008). At São Tomé island 
(Atlantic E), at two foraging sites (separated by 50 km), diet 
composition indicated distinct isotopic niches: a diet domi-
nated by macroalgae and animal matter at one rocky reef 
site (with no seagrass) and a mixed diet of seagrass, mac-
roalgae and animal matter at a site with seagrass (Hancock 
et al. 2018). Besides availability of diet components, it is 
also important to consider their energy value via nutritional 
composition (e.g., protein, fat content, Neutral Detergent 
Fibre (NDF) that affects digestibility). Nutrition analysis for 
diet of green turtles has been conducted at a number of sites 
(e.g. Bjorndal 1979; Sampson et al. 2018) but nutritional 
values are not available for many dietary components (e.g., 

Thalassodendron ciliatum Trevathan-Tackett et al. 2017), 
and this is an important area for future research.

We were unable to properly analyse the relationship 
between food availability and diet composition due to lack 
of detailed data about both sets of variables in individual 
studies. Nevertheless, all studies that recorded no seagrass 
in the diet, such as those in the Atlantic SW (Reisser et al. 
2013; Darré Castell et al. 2005) and in the southern Pacific E 
(Carrión-Cortez et al. 2010; Jiménez et al. 2017), were from 
regions characterised by sparse to non-existent seagrass hab-
itats (UNEP-WCMC & Short 2018). The global distribution 
layer for seagrass based on point data (UNEP-WCMC & 
Short 2018) is currently the most accurate dataset available, 
and although a recent study has estimated seagrass extent 
worldwide, the authors describe numerous weaknesses in the 
data (McKenzie et al. 2020) limiting its utility as a quantita-
tive data source. This means the dataset offers no metrics 
with which to estimate seagrass availability as a driver of 
amount of seagrass in green turtle diet at a local level.

Size class of turtles

Size class may be expected to play a role in determining 
rates of omnivory. Studies across taxa demonstrate that indi-
viduals maximise growth rates from juvenile to maturity by 
selecting a high protein diet. This has been demonstrated 
for a variety of reptiles (e.g., Durtsche 2004; Bouchard and 
Bjorndal 2006; Wotherspoon and Burgin 2016) which may 
explain why animal matter is so important for post-hatching 
green turtles < 25 cm CCL (Hancock et al. 2018).

The timing and the size class at which the dietary shift 
between late pelagic stage and neritic recruitment varies 
across sub-regions. For example, green turtles in the Atlan-
tic (Bjorndal and Bolten 1988) shift to a neritic life stage 
at a smaller size than those in the Indo-Pacific (Limpus 
et al. 1994). Stable isotope studies that sample inert tis-
sues (e.g. bone growth layers) enable assessment of forag-
ing history and determination of the timing of ontogenetic 
shift, e.g., at 20–25 cm CCL in the Atlantic SW (Bjorndal 
et al. 2000). This method has been used to show that timing 
varies across sub-regions in Atlantic SW, Pacific SW, and 
Mediterranean (see Reich et al. 2007; Arthur et al 2008; 
Cardona et al. 2010; González Carman et al. 2012; Howell 
et al. 2016). In Uruguay (Atlantic SW), turtles shift from 
omnivory (gelatinous microzooplankton) to herbivory at 
approximately 45 cm CCL (Vélez-Rubio et al. 2016), but 
along the NW coast of Africa (Atlantic E) at about 59 cm 
CCL (Cardona et al. 2009). No clear ontogenetic dietary 
shift was reported at foraging sites in either the western 
Pacific, Pacific E, or Atlantic E as levels of omnivory were 
similar for both juveniles > 25 cm CCL and adults (Lem-
ons et al. 2011; Shimada et al. 2014; Hancock et al. 2018). 
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Nevertheless, intra-population variation in diet composition 
also exists (Burgett et al. 2018).

Animal matter decreased in importance for larger size 
classes in the Gulf of Gabes (Mediterranean) (Karaa et al. 
2012) and in the Dry Tortugas National Park, Florida (Atlan-
tic NW) (Roche, 2016). At a few sites, larger size classes for-
aging in tropical seagrass meadows may exhibit high levels 
of omnivory. For example, at Fiji (Pacific SC), the diet of 
turtles measuring 43–89 cm CCL was 71% animal matter 
(40% invertebrates and 31% fishes) (Piovano et al. 2020).

Unfortunately, because many diet studies included in this 
review did not differentiate between size classes, we were 
unable to further explore size class as a driver of omnivory. 
We encourage future diet studies to incorporate size class 
into their analyses, as it may help clarify timing of the 
ontogenetic shift from a pelagic to a benthic life stage.

Anthropogenic impacts

Our review found that the highest levels of anthropogenic 
debris in the diets of green turtles were in the Pacific Ocean. 
In the Pacific E, at Sechura Bay, Peru (Jiménez et al. 2017) 
and in Gorgona Park, Colombia (Sampson et al. 2018), 8% 
and 13.1% of diet, respectively, comprised anthropogenic 
debris. In the Pacific NW, green turtles foraging along the 
Sanriku coast of Japan ingested a range of artificial debris, 
including hard and soft plastics, styrofoam, fishing line/rope 
and rubber (Fukuoka et al. 2016). Coastal habitat degrada-
tion associated with anthropogenic development, such as 
that at highly urbanised sites along the east coast of Brazil in 
the Atlantic SW, affects the diversity of food items and can 
contribute to low dietary diversity in green turtles (Santos 
et al. 2011). Furthermore, Santos et al. (2015) report high 
foraging plasticity amongst green turtles in estuaries that 
combine an estuarine diet with pelagic foraging, perhaps in 
response to habitat degradation.

Relative merits and constraints of diet analysis 
techniques

Our review describes diet composition based on studies 
that used a variety of analytical methods, each character-
ised by benefits and disadvantages. Besides less-invasive 
direct observation of foraging behaviour (e.g., Schofield 
et al. 2006), two relatively simple and low-cost traditional 
quantitative methods of gut content analysis provide specific 
information on the composition, occurrence and quantity 
of species consumed (Miller et al. 2010). The analysis of 
a dissected gut provides an unbiased record (Gama et al. 
2016) of recently ingested food from the oesophagus (e.g., 
Stokes et al. 2019). Oesophageal lavage from live animals is 
more common but only provides an indicative record of food 
consumed due to relatively small sample sizes produced and 

selective retention of larger items by oesophageal papillae 
(Reisser et al. 2013). SIA has developed in the past two 
decades as a powerful tool to complement these traditional 
methods of studying diet and trophic ecology (see review by 
Haywood et al. 2019). Analysis of the composition of stable 
isotopes (δ13C and δ15N) in tissues with different residence 
times provides historical evidence of diet and patterns of 
ontogenetic shift (Arthur et al. 2008; Cardona et al. 2009; 
Vander Zanden et al. 2013; Vélez-Rubio et al. 2018). For 
example, blood serum represents food consumed recently 
and epidermal tissue or scutes represent the diet consumed 
several months previously (Reich et al. 2008). In some cases, 
however, SIA may over-estimate the relative volume of ani-
mal matter in the diet because a higher proportion of animal-
sourced δ15N may be assimilated into the tissues compared 
with plant-sourced δ15N; or it may misrepresent relative con-
tributions of different types of plant matter (Lemons et al. 
2011; Bezerra et al. 2015). Remote videography can provide 
insights to diet composition; however, it is difficult to cal-
culate the relative contribution to diet from video observa-
tions of bite counts without support from other techniques 
(Thomson et al. 2018).

The results of diet studies can be biased by the type of 
sampling used. Broadly, gut contents represent ingestion 
and SIA values measure assimilation. Bite counts/events 
from video footage may not provide an accurate measure of 
amounts ingested. Animal matter may be overestimated by 
SIA and video analysis. At Bahia de los Angeles, Mexico, 
depending on sampling technique, animal matter was found 
to comprise 3% (oesophageal lavage), 20% (gut content) and 
32% (video) (Seminoff et al. 2002; 2006). Similarly, at Shark 
Bay, Australia, animal matter was measured at 0% (oesopha-
geal lavage), 20% (SIA), and 40–43% (video) (Burkholder 
et al. 2011; Thomson et al. 2018). It would be interesting 
to conduct simultaneous studies using multiple methods at 
other sites to confirm whether such relative differences are 
consistent.

In contrast to traditional gut sampling, SIA analyses have 
teased apart some of the cryptic components of green turtle 
diet. In the Caribbean, Vander Zanden et al. (2013) reported 
that while green turtles in Costa Rica might appear to have 
a more omnivorous diet (due to presence of higher δ15 val-
ues) than foraging aggregations in neighbouring Nicara-
gua, in fact, differences in stable isotope composition were 
attributable to regional variation in primary production and 
nutrient cycling rather than differences in patterns of prey 
consumption (Vander Zanden et al. 2013). Another limita-
tion of SIA is that all prey items must be sampled within the 
same time frame that the sampled tissues are synthesised 
(Haywood et al. 2019). It follows that stable isotope studies 
that only sample potential prey items previously identified in 
gut or lavage samples taken at a foraging site risk excluding 
important prey items. For example, in Bermuda, samples 



 Marine Biology         (2020) 167:183 

1 3

  183  Page 12 of 17

of seagrass, macroalgae and certain potential prey animals 
were analysed to determine stable isotope ratios (Burgett 
et al. 2018). But, because the diet studies had not identi-
fied mangroves in their lavage samples, stable isotopes of 
mangroves were not assessed even though it is possible that 
mangroves which occurred in the area actually featured in 
the diet. Sampson et al. (2018) reported they were unable to 
run the MixSIAR model for green turtles due to exclusion of 
key prey items that were not considered potential prey from 
previous lavage studies.

Climate change considerations

Our study concludes that SST has a small but significant 
effect on levels of omnivory, and so a warming climate is 
likely to modify the prey available to green turtles. There is 
some evidence that recent changes in forage availability are 
associated with changes in water temperature, particularly 
in shallow waters where summertime superheating can lead 
to major loss of temperature-sensitive seagrasses (Campbell 
et al. 2006). For example, a major die-off of colder-water 
seagrass species occurred in response to a marine heatwave 
that impacted the important green turtle foraging area in 
Shark Bay, Western Australia (Arias-Ortiz et al. 2018).

Future changes in local conditions (e.g. SST, sea level, 
salinity or water current regime) may modify ecosystem 
structure and biodiversity (Thomson and Heithaus 2014). 
An overall reduction in seagrass habitat globally has been 
predicted during the next decade due to a combination 
of anthropogenic threats (Unsworth et al. 2019). Climate 
change might alter patterns of oceanic currents, gyres and 
eddies (Toggweiler and Russell 2008) and thereby affect 
water temperature and the availability and distribution of 
sea turtle food resources. Moreover, habitats are rarely static 
through time and can undergo long-term natural cycles of 
loss and recovery (Rasheed and Unsworth 2011) influencing 
their capacity to support grazing turtles.

Our review indicates that green turtle diets are vari-
able, and this flexibility may enable adaptation to chang-
ing resources after environmental perturbations, such as 
marine heatwaves (Arias-Ortiz et al. 2018). Turtles may 
adapt to seasonal changes in food availability by modifying 
their diets (González Carman et al. 2012). Green turtles can 
alter their foraging behaviour as evidenced by consumption 
of invasive seagrass species that spread into key foraging 
habitats (e.g., Becking et al. 2014; Whitman et al. 2019). 
Turtles might also expand their foraging home ranges, as 
they have with serial residency in Shark Bay, Western Aus-
tralia (Thomson et al. 2018), or they may shuttle between 
foraging sites (Piovano et al. 2019) or even adapt to new 
foraging sites, as demonstrated by a loggerhead turtle that 
re-located to a new site after flooding and a tropical cyclone 

destroyed > 1000 km2 benthic habitat in its home range (Shi-
mada et al. 2020).

Flexibility in green turtle diet is evident across regions. 
Temporary diet switching between seagrass and macroalgae 
has been recorded by individual green turtles (Fuentes et al. 
2006) and longer-term diet shifts in response to invasive 
algae have been observed in turtle aggregations (Russell 
and Balazs 2015; Christianen et al. 2019). Likewise, green 
turtles have adapted their diet to changing environments 
through seasonal variation in diet (Piovano et al. 2020) and 
switching between reef and estuarine habitats (Machovsky-
Capuska et al. 2020). At the extremes of their geographic 
distribution, the foraging plasticity of green turtles is demon-
strated by an omnivorous diet and pelagic foraging (Santos 
et al. 2015). Green turtles are highly adaptive, but whether 
turtles will be able to sufficiently shift their diet in response 
to warming SST remains a concern for this threatened spe-
cies. In conclusion, ours is the first study to document the 
full extent of variation in green turtle diet in different regions 
throughout the world, and to quantify this relationship on a 
global scale. We were also able to demonstrate a correlation 
between water temperature and diet composition, which has 
important implications in the face of climate change.
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