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a b s t r a c t

The Hawaiian green sea turtle genetic stock is endemic to the Hawaiian Archipelago. This

stock was depleted over the past century mainly due to over-exploitation that ceased during

the 1970s following protection under the US Endangered Species Act. Nesting trends sug-

gest the stock has been recovering but no formal stock assessment has been undertaken.

So, we used a Bayesian state-space surplus-production model to describe Hawaiian green

turtle population dynamics given limited data and uncertainty about sea turtle demography.

Data series comprised commercial landings of green turtles reported from the Archipelago

(1944–1973) and nester abundance recorded at the primary rookery on East Island, French

Frigate Shoals (1973–2004). The model incorporated process and observation error and was

fitted using Markov chain Monte Carlo simulation with a mix of informative and non-

informative priors. We estimated that the Hawaiian green turtle stock was ca. 20% of

pre-exploitation biomass when monitoring and protection began in the 1970s. The stock

is estimated to be now ca. 83% of pre-exploitation biomass with an intrinsic growth rate

ca. 5.4% pa (95% Bayesian credible interval: 3.1–8.9%). Rebound or recovery potential (also

exploitation rate at MSP) of this stock was estimated to be 3.4% (1.6–6.2%), which is consistent

with estimates for other long-lived late-maturing marine species. So, this once-seriously-

depleted green turtle stock is well on the way to recovery and a limited harvest might now be

demographically feasible. These findings are relevant for supporting informed public policy

debate on the restoration of indigenous hunting rights in the Archipelago. Parameter esti-

mates and model structure from the Bayesian surplus-production model were incorporated

in an interactive easy-to-use stochastic simulation model to help support policy analysts in

stock recovery planning and to explore sustainable harvest potential.

© 2007 Elsevier B.V. All rights reserved.

1. Introduction

The green sea turtle, Chelonia mydas, is the most abundant
large long-lived marine herbivore (Bjorndal, 1997) and has
a long history of human exploitation for meat and eggs
(Parsons, 1962). The Hawaiian green turtle stock is increas-
ing in abundance following severe depletion due to nesting

∗ Corresponding author. Tel.: +61 419180554; fax: +61 7 3365 7299.
E-mail address: m.chaloupka@uq.edu.au (M. Chaloupka).

habitat destruction (Amerson, 1971) and over-exploitation of
eggs and turtles (Balazs and Chaloupka, 2004a). Green turtles
resident in Hawaiian waters comprise a single genetic stock
(Bowen et al., 1992) that is dispersed over numerous coral
reef and coastal foraging grounds throughout the Hawaiian
Archipelago (Balazs and Chaloupka, 2004b). Adult female tur-
tles resident in these foraging grounds migrate every few years

0304-3800/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.ecolmodel.2007.02.010
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to nest mainly on sand islands at French Frigate Shoals, which
is located in the northwest of the Archipelago (Balazs and
Chaloupka, 2004a). Nesting habitat in French Frigate Shoals
was reduced as a consequence of military activity during the
1930s and then in the late 1940s due to construction and oper-
ation of a LORAN surveillance station (Amerson, 1971).

Green turtles, including nesting females, were harvested
during exploratory expeditions to the Northwestern Hawaiian
Islands in the 19th century (Amerson, 1971). The histori-
cal exploitation of green turtles in the Archipelago is poorly
documented but may have been quite extensive (Amerson,
1971; Balazs, 1980). The commercial harvest of Hawaiian
green turtles developed during the mid-1940s (Amerson, 1971)
and increased significantly during the late 1960s and early
1970s (Fig. 1a), which was mainly due to increasing local
tourism and restaurant demand (Witzell, 1994). Commercial
harvesting ceased in 1974 when the Hawaiian stock was seri-
ously depleted (Balazs and Chaloupka, 2004a). Comprehensive
annual surveys of green turtle nesting at the main rookery
in French Frigate Shoals have been conducted since 1973
(Balazs and Chaloupka, 2004a). Nesting trends suggest that
the stock has been recovering since the late 1970s (Fig. 1b) and
there are now increasing demands to delist the species under
the US Endangered Species legislation and to consider the
restoration of indigenous hunting rights (Kinan and Dalzell,
2005). However, no formal stock assessment of Hawaiian green
turtles has been undertaken because of a lack of suitable har-
vest and demographic information (Balazs and Chaloupka,
2004b).

So, we use a Bayesian state-space modelling approach to
fit a stochastic population dynamics model to the Hawaiian
green turtle nesting abundance data series given the known
commercial harvest history. This Bayesian inference approach
enabled prior knowledge of green turtle demography to be
incorporated in order to supplement the limited information
available for the Hawaiian stock (Chaloupka, 2002, 2004). This
approach also enables uncertainty in model parameter esti-
mates and the significant observed temporal variability of the
nesting abundance data (Fig. 1b) to be accounted for explicitly.
The main objective was to determine whether it was possible
to derive meaningful estimates of important population and
management parameters for the Hawaiian green turtle stock
based on limited data availability. It is anticipated that these
estimates could then be used to assess the current recovery
status of the Hawaiian green turtle stock and to determine
whether a limited harvest for indigenous cultural purposes
might be demographically feasible.

2. Data and modelling approach

2.1. Data series

Data available for stock assessment of the Hawaiian green
turtle stock comprise the reported annual landings in the
Hawaiian Archipelago ht, t = 1944, . . ., 1973 (Fig. 1a), and a
relative abundance index It, t = 1973, . . ., 2004, which is the
number of female green turtles that nest each year at the
stock-specific rookery on East Island, French Frigate Shoals
(Fig. 1b). The nesting series was based on the annual rookery

Fig. 1 – Time series of (a) reported commercial landings
from 1944 to 1973 of green sea turtles in the Hawaiian
Archipelago and (b) annual number of green turtles
recorded nesting at the East Island rookery (French Frigate
Shoals) from 1973 to 2004. The underlying trend in annual
nester abundance at the East Island rookery is shown in (c)
where solid curve shows a generalised smoothing spline
fit, dashed curves show 95% Bayesian confidence interval
and open dots show the data (note the log scale).

surveys conducted since 1973 (Balazs and Chaloupka, 2004a).
Reported landings or harvest (ht) ceased in 1973 and repre-
sents an unknown fraction (�) of the true harvest (Balazs,
1980), which is assumed to be Ht = �−1ht, where � is a constant
estimable parameter. Age composition data are not available
for the harvest series (Balazs, 1980) or for Hawaiian green tur-
tle abundance (Balazs and Chaloupka, 2004b). The trend in the
observed nester abundance (Fig. 1b) was estimated using a
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generalised smoothing spline regression approach (Gu, 2002),
which uses the data to determine the underlying trend with-
out assuming any specific functional form. It is clear from the
smoothing spline trend that the Hawaiian green turtle nesting
population has increased significantly over the last 25 years or
more (Fig. 1c). This smoothing spline trend was then also used
to evaluate the fit of the Bayesian state-space model outlined
below.

2.2. Bayesian state-space model

Surplus-production models are the most commonly used
stock assessment approach when limited to data compris-
ing only harvest and relative abundance time series (Hilborn
and Walters, 1992). Hence, the Hawaiian green turtle stock
dynamics was accounted for by fitting a surplus-production
model using the annual harvest time series and the East
Island nesting time series within a Bayesian state-space
modelling framework. A state-space model describes the tem-
poral dynamics of two linked processes that may include
error in either process: (1) a state process that describes
the unobserved population dynamics in terms of biomass
or abundance and (2) an observation process based on
population-specific survey data that are a function of the
unobserved state process (Buckland et al., 2004). Error in the
state process is due to demographic variability and is com-
monly referred to as process error (Punt, 2003). Observation
process error can be due to measurement error or because
the data display substantial temporal variability (Punt, 2003),
like the green turtle nester series that is due to environmental
stochasticity (Fig. 1b).

A Bayesian state-space modelling approach (Millar and
Meyer, 2000) was then used to fit a stochastic green turtle pop-
ulation dynamics model to the nester series while accounting
for process and observation error as well as our prior knowl-
edge about green turtle demography. The Bayesian model
comprised the following probability density function (pdf)

gt(Bt|Bt−1, �) a state process pdf (1a)

g0(B0, �) an initial state pdf (1b)

f (It|Bt, �) an observation process pdf (1c)

where Bt is the unobserved annual biomass in tonnes for
the Hawaiian green sea turtle stock exposed to harvesting
(t = 1944, . . ., 2004), It the observed annual number of green
turtles nesting at the East Island rookery (t = 1973, . . ., 2004),
and � is a vector of model parameters. Annual nestings
between 1944 and 1972 were then treated as unobserved ran-
dom variables in the Bayesian modelling framework outlined
below.

The state process (1a) was then defined as follows in dis-
crete time form (Hilborn and Walters, 1992):

Bt = Bt−1 + f (Bt−1) − Ht−1 (2)

where Bt is the biomass (tonnes) at beginning of year t for
t = 1944, . . ., 2004, Ht = �−1ht the expected harvest (tonnes)
during year t, ht the reported harvest in tonnes (Fig. 1a),

� the harvest report rate and f(·) is a surplus-production
function specified as the following generalised logistic or
Richards–Nelder function (Nelder, 1962):

f (Bt−1) = rBt−1

(
1 −

(
Bt−1

K

)z
)

, r > 0, K > 0, z ≥ 1 (3)

where r is the intrinsic population growth rate, K the carry-
ing capacity and the exponent z = m − 1 reflects the degree
of asymmetry of the production function and so is a mea-
sure of density dependence. When z = 1 (m = 2) then (3) is a
logistic function otherwise (3) is a skew-asymmetric func-
tion. Substituting (3) in (2) provides the biomass dynamics
model known in the fisheries literature as a Pella–Tomlinson
type surplus-production model (Hilborn and Walters, 1992).
This model assumes that it applies to a single closed stock
and that the dynamics of the stock are well described by
density-dependent growth, mortality and recruitment pro-
cesses (Zhang et al., 1991). The Hawaiian green turtle stock
comprises a single closed genetic stock that is endemic to
the Hawaiian Archipelago (Bowen et al., 1992) and various
density-dependent processes such as somatic growth and
reproduction are apparent for green turtle stocks (Bjorndal et
al., 2000; Chaloupka, 2004).

The Pella–Tomlinson type surplus-production model was
reparameterised in terms of relative biomass (Pt = Bt/K) as
follows to reduce parameter confounding such as between
biomass and K that could result in dependent priors (see Meyer
and Millar, 1999):

Pt = Pt−1 + rPt−1(1 − Pz
t−1) − Ht−1

K
(4)

A number of useful harvest management measures can
then be derived from (4) such as BMSP, FMSP, MSP, Bstatus
and Fstatus where BMSP = K/((z + 1)(1/z)), FMSP = r/((z + 1)(1/z)),
MSP = (BMSP)(FMSP), Bstatus = Bt/BMSP and Fstatus = Ft/FMSP
(Zhang et al., 1991). MSP is the maximum surplus-production,
BMSP is the biomass at MSP, FMSP is the harvestable fraction at
MSP, Ft = Ht/Bt is the harvested or exploitation fraction where
Ht = �−1ht. If (4) was a skew-symmetric or logistic surplus-
production model with z = 1 (or m = 2 since z = m − 1) then
BMSP = K/2 and FMSP = r/2 and MSP = rK/4.

Process error was accounted for in the state process (4) by
assuming multiplicative lognormal error as follows for t = 1945,
. . ., 2004 with diffuse or non-informative priors for the process
error variance summarised in Table 1:

Pt ∼ lognormal(Pt, �2) (5)

It is common practice in fisheries surplus-production mod-
els to assume multiplicative lognormal error for either the
state or observation processes (McAllister and Kirkwood,
1998; Punt, 2003). It is also commonly assumed in surplus-
production models that the initial biomass (B0) is equal to
the carrying capacity (K) or that P0 = 1 (Punt, 2003). However,
the Hawaiian green turtle stock was well depleted prior to the
reported harvest period shown in Fig. 1a (Balazs, 1980) so that
B0 � K was a more likely but unknown initial state in 1944.
Therefore, the initial state process (P1944 = B1944/K) of the state-
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Table 1 – Summary of prior probability density functions used for the nine parameters in the Bayesian state-space model

Parameter Prior Percentiles

2.5% 50% 97.5%

r (intrinsic growth rate) Lognormal(−2.87, 0.322) 0.03 0.06 0.11
K (carrying capacity) Lognormal(7.25, 0.752) 542 1408 3676
z (shape parameter) Uniform(1, 5) Non-informative
q (abundance index scale) Inverse-gamma(0.001, 0.001) Non-informative
�2 (process error variance) Inverse-gamma(0.001, 0.001) Non-informative
�2 (observation error variance) Inverse-gamma(0.001, 0.001) Non-informative
� (harvest report rate) Beta(˛, ˇ)
˛ (report rate hyperprior) Uniform(1, 100) Non-informative
ˇ (report rate hyperprior) Uniform(1, 100) Non-informative

space model (1b) was sampled from a uniform prior pdf to
reflect non-informative and uncertain initial relative biomass
in 1944 at the start of the reported harvest time series (Fig. 1a):

P1944 ∼ uniform (0.01, 3) (6)

The observation process of the model (1c) assumes that
the relative abundance index (It; Fig. 1b) is proportional to the
relative biomass (Pt) as follows (Meyer and Millar, 1999):

It = qKPt (7)

where q is the relative abundance scaling factor also known as
the catchability coefficient in the fisheries literature (Hilborn
and Walters, 1992). Observation error was also accounted for
in the observation process (7) as follows for t = 1944, . . ., 2004
with non-informative priors for the observation error variance
summarised in Table 1:

It ∼ lognormal(It, �2) (8)

The Bayesian state-space model (1) then comprises the
Pella–Tomlinson type surplus-production state process pdf (4),
the initial state pdf (6), the observation process pdf (8) with
parameter set � = {r, K, z, q, �2, �2, �, ˛, ˇ}and the priors listed in
Table 1. Besides the parameter set �, the unobserved variables
in (1) included (P1944, . . ., P2004), and (I1944, . . ., I1972).

The priors comprised informative and non-informative
independent priors (Table 1). Non-informative priors were
based on recommendations in McAllister and Kirkwood (1998)
and Millar and Meyer (2000). The informative prior for popu-
lation growth rate (r) was based on estimates derived from
analyses of other green turtle nester trends (Chaloupka and
Limpus, 2001; Balazs and Chaloupka, 2004a). The carrying
capacity (K) prior was based on simulation experiments
with (i) a stochastic age-, sex- and spatially structured
model (Chaloupka and Balazs, unpublished) to determine the
approximate Hawaiian stock size needed to realise the East
Island rookery nesting abundance (Fig. 1b) and (ii) stochastic
metapopulation models for other green turtle stocks to derive
estimates of stable age structure and proportion of mature
females in a population like the southern Great Barrier Reef
stock (Chaloupka, 2002, 2004). A U[0.01,3] prior was used for
unknown initial relative biomass (6) to reflect a complete lack
of information for the state of this variable at the start of the
harvest record in 1944 (Fig. 1a). We could have used an infor-

mative prior for observation error based on an estimate of the
temporal variability in nester trends for other green turtle pop-
ulations but we choose to use as many non-informative priors
as possible.

Meyer and Millar (1999) and Rivot et al. (2004) have shown
how Bayesian non-linear state-space models can be readily
fitted using Markov chain Monte Carlo simulation in Win-
BUGS (Lunn et al., 2000). We fitted Bayesian state-space model
(1) using the WinBUGS code shown in Appendix A based on
the Meyer and Millar (1999) BUGS code. Marginal posterior
distributions of model parameters, management measures
and unobserved variables were based on 250,000 iterations
after discarding the first 50,000 iterations (burn-in sample)
to ensure no persistent initial pathologic behaviour. These
iterations were reduced to 10,000 by sampling every 25th
value to avoid sample correlation. The posterior densities
were summarised using local likelihood density estimation
(Loader, 1999). Model sensitivity to informative priors was then
evaluated by using alternative forms of the carrying capac-
ity prior (McAllister and Kirkwood, 1998; Millar and Meyer,
2000). The comparative model fit was evaluated using the
deviance information criterion (DIC) developed for Bayesian
models (Spiegelhalter et al., 2002) although other approaches
are emerging (Aitken et al., 2005). Model convergence diagnos-
tics were performed on two separately initialised chains using
the BOA package for R (Smith, 2004).

2.3. Stochastic simulation model

The Bayesian state-space model (1) can be used to evalu-
ate various management scenarios by projecting the state
process beyond t = 2004 following some model-based manage-
ment intervention. We did this to evaluate constant-offtake
harvest scenarios (see Hilborn and Walters, 1992). However,
it is easier to use a fast and interactive stochastic simula-
tion model that captures the same structure and estimated
parameters of model (1). This sort of model is better suited for
supporting scenario and consensus building tasks by interdis-
ciplinary policy or recovery planning teams with little or no
modelling background (Ruth and Lindholm, 1996). However,
the stochastic simulation model cannot be used to statisti-
cally fit the model to the data unlike the state-space model.
Hence, the two models together provide a useful ensemble tool
for stock recovery or policy planning based on robust estima-
tion given data uncertainty. Therefore, a differential equation
based simulation model version of the Bayesian state-space
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model (1) was developed. The differential equation form of the
Pella–Tomlinson type surplus-production in biomass terms is:

dB

dt
= rBt−1

(
1 −

(
Bt−1

K

)z
)

− Ht−1 (9)

The stochastic surplus-production simulation model com-
prising state process (9) with lognormal process error and
stochastic observation process (8) was then implemented
using MADONNA, which is a fast and an easy-to-use ordi-
nary differential equation solver and C-preprocessor (Macey
et al., 2000). This model included the harvest and nester series
(Fig. 1) and posterior median parameter (or hyperparameter)
estimates derived from the Bayesian model. Annotated model
code is shown in Appendix B where the lognormal, gamma
and beta sampling functions were derived using algorithms in
Naylor et al. (1966) since these are not available in MADONNA.
All the model parameters are readily changed using interac-
tive parameter devices available in MADONNA to enable the
user to easily and quickly explore the model dynamics and
to implement different management settings (see Ruth and
Lindholm, 1996 for an example addressing multispecies fish-
eries management).

3. Results

3.1. Model summaries

Four variants of the Bayesian state-space surplus-production
model were compared: (1) a Pella–Tomlinson surplus-
production model with an informative lognormal prior on K,
(2) a logistic surplus-production model (z = 1) with all other
settings the same as for the previous model, (3) an alternative
Pella–Tomlinson surplus-production model with a diffuse uni-
form prior on log K and (4) another alternative Pella–Tomlinson
surplus-production model with informative priors on K and
the harvest report rate. The four models were used to help
evaluate model sensitivity to informative priors and to the
surplus-production functional form. The posterior marginal
distributions of all the parameters, stock status indicated by
the unobserved variables (P1944, . . ., P2004), and (I1944, . . ., I1972)
and derived management measures for these four models
are summarised in Table 2. The posterior mean and median
were dissimilar for most parameters, management measures
and unobserved variables (Table 2). The means were gener-
ally greater than the medians because most distributions were
right skewed so that posterior distributions were better sum-
marised by the percentiles (2.5th, 50th = median, 97.5th).

The best-fit of the four models was Model 1 (Table 2a) and
it passed all convergence and stationarity diagnostics for the
two chains used. While Model 1 was the best-fit model, there
was no meaningful difference between all four models based
on the DIC since the DIC range was <2 (Table 2). Therefore,
the posterior distribution summaries for all four models are
given in Table 2 since any of these models could be used
for evaluating management interventions given the available
data and significant model uncertainty. However, there were
major differences in some of the parameters, stock status and
management measures for the four models. For instance, the

logistic surplus-production model (Table 2b) estimated that
the Hawaiian green turtle stock had recovered to ca. 73% of
the pre-exploitation biomass by 2004 compared to ca. 83–90%
for the Pella–Tomlinson models (Table 2). Moreover, the logis-
tic and Pella–Tomlinson model with an uninformative carrying
capacity prior provide comparatively lower management mea-
sures such as MSP and BMSP than the Pella–Tomlinson models
with informative priors. These more conservative measures
might be more appealing to risk-averse managers. On the
other hand, all models estimated that the stock had declined
to ca. 21–26% of the pre-exploitation biomass when commer-
cial harvesting of Hawaiian green turtles ceased in 1973.

The three Pella–Tomlinson models (Table 2a, c, d) were
slightly better fits that the logistic model (z = 1) based on DIC
but the precision of the Pella–Tomlinson shape parameter
(z > 1) was imprecise in all cases despite being significantly
>1 (Table 2). So while a skew-asymmetric surplus-production
function was evident for the Hawaiian stock there was signif-
icant uncertainty about the specific shape of the production
function. Furthermore, using an informative prior on the har-
vest report rate (�) also had little effect on model fit or the
posterior median of most parameters, management measures
or unobservables (cf. Table 2a, d). So while there is no doubt
that there was under-reporting of Hawaiian turtle landings
(Balazs, 1980; Witzell, 1994), the data were not strongly infor-
mative, with all three models with a non-informative report
rate prior suggesting that � ≤ 53% (Table 2a–c). Nonetheless,
exploring further, it was found that � ≤ 35% when using a more
informative prior, which imposed a belief that the report rate
was � 50% (Table 2d). So a constant annual report rate ca. 35%
might be a better estimate but again the estimate is imprecise
(95% credible interval: 9–69%: Table 2d) and fitted no better
than Model 1.

3.2. Model trends

The posterior median relative biomass trends for the three
models with uninformative harvest rate prior (Table 2a–c) are
shown in Fig. 2a. There was little difference in the estimated
historical trends from 1944 to 2004 for the logistic and the
Pella–Tomlinson model with informative K prior, although the
annual estimates were imprecise (Table 2; see Fig. 2b). The rel-
ative biomass trend for the model with an uninformative prior
was different from these two models prior to 1973, suggest-
ing that the Hawaiian green turtle stock was not significantly
depleted in 1944 at the start of the commercial land-
ings series—perhaps only to ca. 61% of the pre-exploitation
biomass (Table 2c). On the other hand, the two models with
informative K prior suggest that the stock was significantly
depleted in 1944 to <33% of the pre-exploitation biomass. All
three models were similar from 1973 onwards when harvest-
ing ceased and population monitoring commenced (Fig. 2a),
which suggests that the data are quite uninformative about
the historical trend prior to 1973 unless an informative car-
rying capacity prior was used. The posterior median biomass
trends for these models are shown in Fig. 2c where all models
suggest the exploitable stock biomass was ca. 300–400 tonnes
in 1944, although again the annual biomass estimates were
imprecise (Fig. 2d). The predicted posterior median nester
trends for the three models with uninformative harvest rate
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Table 2 – Summary of posterior means and percentiles for management parameters and model variables derived from 4
Bayesian state-space surplus-production models

Parameter Mean S.D. Percentiles

2.5% Median 97.5%

(a) Model 1 (production function shape parameter z > 1, lognormal prior on K); DIC = 379.1
Carrying capacity (K, tonnes) 1863.0 1456.0 321.1 1431.0 5835.0
Intrinsic population growth rate (r) 0.056 0.015 0.031 0.054 0.089
Abundance index scaling factor (q) 0.512 0.739 0.050 0.287 2.453
Production function shape parameter (z) 2.97 1.18 1.09 2.94 4.91
Biomass in 1944 (tonnes) 906.7 1499.0 96.7 329.0 5148.0
Biomass in 1973 (tonnes) 437.4 523.0 43.5 278.8 1759.0
Biomass in 2004 (tonnes) 1548.0 1598.0 134.1 1073.0 5846.0
Biomass fraction of K in 1944 (Pt = Bt/K) 0.574 0.616 0.042 0.269 1.964
Biomass fraction of K in 1973 0.245 0.163 0.036 0.212 0.657
Biomass fraction of K in 2004 0.843 0.445 0.131 0.834 1.850
MSP (maximum surplus-production, tonnes) 41.23 29.02 2.57 30.40 251.85
Bmsp (biomass at MSP, tonnes) 1171.1 752.2 163.3 897.6 4063.5
Fmsp (harvestable fraction at MSP) 0.035 0.008 0.016 0.034 0.062
Fraction of harvest reported (� = beta(˛, ˇ)) 0.507 0.228 0.076 0.506 0.942
˛ hyperparameter for harvest report rate beta pdf 51.55 28.24 4.61 51.85 97.31
ˇ hyperparameter for harvest report rate beta pdf 50.48 28.36 3.56 50.34 97.24
Process error variance (�2) 0.019 0.031 0.001 0.008 0.101
Observation error variance (�2) 0.308 0.094 0.174 0.293 0.533

(b) Model 2 (production function shape parameter z = 1, lognormal prior on K); DIC = 380.9
Carrying capacity (K, tonnes) 1779.0 1410.0 329.7 1365.0 5744.0
Intrinsic population growth rate (r) 0.059 0.017 0.032 0.058 0.099
Abundance index scaling factor (q) 0.636 0.935 0.045 0.333 2.998
Biomass in 1944 (tonnes) 838.9 1273.0 95.4 371.3 4377.0
Biomass in 1973 (tonnes) 448.8 569.1 37.1 261.5 2008.0
Biomass in 2004 (tonnes) 1532.0 1890.0 106.3 902.8 6855.0
Biomass fraction of K in 1944 (Pt = Bt/K) 0.566 0.569 0.045 0.319 1.981
Biomass fraction of K in 1973 0.262 0.201 0.032 0.212 0.773
Biomass fraction of K in 2004 0.865 0.653 0.096 0.727 2.472
MSP (maximum surplus-production, tonnes) 26.26 22.60 4.36 19.44 89.01
Bmsp (biomass at MSP, tonnes) 889.7 704.9 164.9 682.7 2872.0
Fmsp (harvestable fraction at MSP) 0.029 0.009 0.016 0.029 0.049
Fraction of harvest reported (� = beta (˛, ˇ)) 0.496 0.237 0.068 0.497 0.942
˛ hyperparameter for harvest report rate beta pdf 50.17 28.64 3.88 49.82 97.37
ˇ hyperparameter for harvest report rate beta pdf 50.89 28.66 3.69 51.13 97.30
Process error variance (�2) 0.019 0.030 0.001 0.009 0.096
Observation error variance (�2) 0.311 0.093 0.176 0.295 0.538

(c) Model 3 (production function shape parameter z > 1, uniform prior on log K); DIC = 379.7
Carrying capacity (K, tonnes) 2096.0 2523.0 93.3 837.4 8839.0
Intrinsic population growth rate (r) 0.057 0.016 0.031 0.055 0.092
Abundance index scaling factor (q) 1.144 1.786 0.029 0.471 6.456
Production function shape parameter (z) 2.86 1.16 1.08 2.76 4.89
Biomass in 1944 (tonnes) 1022.0 2222.0 90.71 300.8 8261.0
Biomass in 1973 (tonnes) 556.0 855.6 22.05 185.1 2840.0
Biomass in 2004 (tonnes) 1950.0 2757.0 49.36 632.2 9554.0
Biomass fraction of K in 1944 (Pt = Bt/K) 0.765 0.633 0.043 0.609 1.997
Biomass fraction of K in 1973 0.287 0.156 0.039 0.264 0.674
Biomass fraction of K in 2004 0.907 0.421 0.155 0.897 1.890
MSP (maximum surplus-production, tonnes) 46.46 37.39 0.75 17.64 393.75
Bmsp (biomass at MSP, tonnes) 1307.1 198.96 47.4 518.2 6150.6
Fmsp (harvestable fraction at MSP) 0.036 0.008 0.016 0.034 0.064
Fraction of harvest reported (� = beta (˛, ˇ)) 0.539 0.225 0.110 0.532 0.955
˛ hyperparameter for harvest report rate beta pdf 53.52 27.40 5.77 53.97 97.87
ˇ hyperparameter for harvest report rate beta pdf 47.43 28.66 2.95 46.00 97.11
Process error variance (�2) 0.019 0.031 0.001 0.008 0.103
Observation error variance (�2) 0.313 0.093 0.176 0.297 0.539

(d) Model 4 (production function shape parameter z > 1, harvest report rate � ∼ beta(˛ = 3, ˇ = 5)); DIC = 378.6
Carrying capacity (K, tonnes) 1647.0 1262.0 327.4 1283.0 5244.0
Intrinsic population growth rate (r) 0.055 0.015 0.031 0.053 0.088
Abundance index scaling factor (q) 0.515 0.723 0.051 0.306 2.093
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Table 2 (Continued )

Parameter Mean S.D. Percentiles

2.5% Median 97.5%

Production function shape parameter (z) 2.91 1.17 1.08 2.85 4.89
Biomass in 1944 (tonnes) 838.5 1254.0 135.4 426.7 4109.0
Biomass in 1973 (tonnes) 429.9 491.0 50.9 273.0 1802.0
Biomass in 2004 (tonnes) 1434.0 1603.0 156.6 964.0 5499.0
Biomass fraction of K in 1944 (Pt = Bt/K) 0.605 0.557 0.073 0.374 1.927
Biomass fraction of K in 1973 0.267 0.165 0.047 0.236 0.693
Biomass fraction of K in 2004 0.863 0.441 0.150 0.855 1.853
MSP (maximum surplus-production, tonnes) 35.49 18.33 2.61 26.40 223.44
Bmsp (biomass at MSP, tonnes) 1030.8 850.8 166.2 799.5 3649.1
Fmsp (harvestable fraction at MSP) 0.034 0.008 0.016 0.033 0.061
Fraction of harvest reported (�) 0.358 0.158 0.095 0.346 0.693
Process error variance (�2) 0.018 0.029 0.001 0.007 0.097
Observation error variance (�2) 0.312 0.093 0.177 0.298 0.541

prior (Table 2a–c) are shown in Fig. 2e and compared to the
observed nester series from Fig. 1b and the non-parametric
smoothing spline nester trend from Fig. 1c. These models fit-
ted the observed and smoothed nester series well with no
difference between the posterior median trends from 1973
onwards—nonetheless the annual estimates were again quite
imprecise (see Fig. 2f). All models suggest that the Hawaiian
green turtle stock was already depleted (perhaps substantially)
before the start of the harvest data series in 1944 but that
the stock has been recovering since harvesting ceased in 1973.
Moreover, it was evident from Model 1 that the stock was seri-
ously over-exploited prior to 1973 (Fig. 3) based on the posterior
median trends in the biomass status (B/BMSP) and the har-
vest or fishing mortality status (F/FMSP). The posterior median
biomass status was >1 from 1999 onwards, which suggest that
the stock is well on the way to recovery (Fig. 3a). Based on
Model 1, the Hawaiian green turtle stock in 2004 was estimated
to have recovered to ca. 83% of pre-exploitation biomass but
the precision of this estimate was imprecise (Fig. 2b; Table 2a).

3.3. Model sensitivity

The models summarised in Table 2 used at least one infor-
mative prior (Model 4 used three informative priors). These
priors were chosen to be vague to reflect a limited knowl-
edge of green turtle demographic processes and parameters
(Chaloupka, 2002, 2004). The informative prior used for the
intrinsic population growth rate parameter (r) had a strong
empirical justification (Chaloupka and Limpus, 2001) but this
was not the case for the carrying capacity prior (K). There
was some improvement in precision for r but little change in
the posterior distribution for K compared to the prior (Fig. 4).
The carrying capacity prior was very broad yet the posterior
distribution showed no improvement in precision (Fig. 4b),
which suggests the data were not strongly informative about
carrying capacity. It is important then to evaluate model sen-
sitivity to the carrying capacity prior since K is one of the most
important parameters in surplus-production models (Table 2).
However, formal procedures for evaluating Bayesian surplus-
production model sensitivity to at least 1 informative prior
are not well developed (Millar and Meyer, 2000). One simple
but generally useful approach is to specify an alternative form

of the prior such as a vague uniform prior on log K instead
of the informative lognormal prior for K (see McAllister and
Kirkwood, 1998). This alternative K prior was implement in
Model 3 (Table 2c), which had no effect on estimation of the
population growth rate (Table 2, see Fig. 5a). This was not
surprising since the r prior was well defined using a sound
empirical foundation. However, a non-informative K prior did
result in (1) a lower carrying capacity K (Fig. 5b), (2) a lower
depletion in 1944 and (3) more significant recovery by 2004
than for instance the model with an informative K prior.
Model 3 also provided more conservative estimates for some
management measures such as MSP (Fig. 5c). Moreover, Model
3 provided the least precise estimates of some parameters
such as the abundance index scaling factor q (Table 2). On the
other hand, there was no effect of a non-informative prior
on management measures such as FMSP or fishing mortality
at MSP (Fig. 5d) mainly because FMSP is derived from the
better defined population growth rate (Fig. 5a). Accordingly,
some parameters such as r and FMSP are well estimated by
all models but parameters such as K and those defined by K
such as MSP are estimated with substantial uncertainty.

3.4. Model application

We illustrate the utility of this Bayesian state-space surplus-
production model in the following simple harvest example.
The posterior median MSP for Model 1 was ca. 30 tonnes with
the posterior median FMSP ca. 0.034 (Table 2a). We evaluated
the effect of a constant annual harvest of 30 tonnes on the
recovering Hawaiian stock over a 25-year period (2005–2029)
using Model 1 with an informative harvest report rate prior �.
The 25-year intervention period reflects around half the gen-
eration time of Hawaiian green turtles (Balazs and Chaloupka,
2004b) and so provides sufficient time for the population to
respond while 30 tonnes is equivalent to 600 large imma-
ture green turtles (see Fig. 6). We compared this 30 tonnes
pa harvesting scenario to a scenario that involved a smaller
10 tonnes pa offtake and to a no-harvest scenario. The perfor-
mance measures were the posterior distributions of predicted
relative biomass (P2029) and nester abundance (I2029) for the
three alternative harvest offtakes (0, 10, 30 tonnes) at the
end of the 25-year period. Recall also that the stock in
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Fig. 2 – Graphical summary of Bayesian state-space model fits given in Table 2a–c. Panel (a) shows posterior relative
biomass medians of the exploitable Hawaiian green turtle stock (1944–2004) for the Pella–Tomlinson surplus-production
model with informative lognormal prior on K (solid curve), logistic function model (dashed curve) and Pella–Tomlinson
model with uniform prior on log K (dotted curve). Panel (b) show local likelihood density estimates of posterior median
distributions of relative biomass at the start (1944) and end (2004) of the data series for the Pella–Tomlinson model with
informative lognormal priors on r and K (solid curve in Fig. 2a). Panel (c) shows posterior biomass medians of the
exploitable Hawaiian green turtle stock (1944–2004) for the same models in (a) while (d) shows the local likelihood density
estimates of the posterior median biomass distributions in 1944 and 2004 for the Pella–Tomlinson model with informative
lognormal priors on r and K (solid curve in Fig. 2c). Panel (e) shows the predicted posterior median nester abundance at the
East Island rookery (1944–2004) for the same models in (a) where the open dots show observed nester data, dashed curves
show posterior median 95% credible interval for the Pella–Tomlinson model (1973–2004) with informative lognormal priors
on r and K (solid curve) and thin solid curve shows the smoothing spline fit for comparison. Panel (f) shows local likelihood
density estimates of the predicted posterior median nesters distributions in 1944 and 2004 for Pella–Tomlinson model with
informative lognormal priors on r and K (solid curve in Fig. 2e).

2004 was not fully recovered but estimated ca. 83% of pre-
exploitation biomass (Fig. 2a). Therefore, the three scenarios
were compared to the posterior distributions of the perfor-
mance measures in 2004 (see also Fig. 2b and f), which is the
end of the data series (Fig. 1) and prior to the start of the sim-
ulated harvest period. The posterior distributions of the two
predicted population measures (P2029, I2029) for the three sce-
narios are shown in Fig. 7. Projecting the stock over a 25-year

horizon leads to uncertain stock abundance estimates but this
is an unavoidable consequence of making predictions for a
long-lived late-maturing marine species. More extensive data
series and perhaps better-constructed priors might improve
model fit but not the uncertainty of long-range predictions.
The posterior median for relative biomass or nesters is higher
in 2029 than 2004 because the stock was very close to K in
2029 but only 0.83 K in 2004 (Table 2a). Harvesting at 10 tonnes
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Fig. 3 – Graphical summary of the Hawaiian green turtle
stock exploitation history (1944–2004) shown by posterior
median trends in (a) the Bstatus (B/BMSP) and (b) the
Fstatus (F/FMSP) that were derived from the
Pella–Tomlinson model with informative lognormal priors
on r and K (see solid curves in Fig. 2a, c and e). Dotted lines
show exploitation benchmarks where Bstatus < 1 and
Fstatus > 1 indicate a history of over-exploitation.

pa for 25 years would result in a slightly depleted stock com-
pared to the no-harvest alternative and is similar to either
predicted relative biomass (Fig. 7a) or nesters (Fig. 7b) in 2004.
Harvesting at MSP (30 tonnes) for 25 years would result in a
significantly depleted stock although the predicted depletion
level is highly uncertain for relative biomass or nesters (Fig. 7).
In fact, maximum surplus-production or MSP occurs at ca.
0.63 K (or BMSP/K) for the Pella–Tomlinson surplus-production
model (Table 2a) and it is this depletion level that is realised
in Fig. 7a for the stock harvested at MSP for 25 years. How-
ever, it is well known that harvesting at MSP is commercially
unsustainable (Hilborn and Walters, 1992) and so some frac-
tion p of MSP or FMSP such as p = 0.75 has been proposed to
maximise the yield but minimise the risk to stock viability
(Jensen, 2002). Therefore, harvesting the Hawaiian green turtle
stock at 0.75MSP = ca. 23 tonnes pa (0.75FMSP = 0.026) would still
reduce the stock but limit the depletion and improve the yield
compared to harvesting at the MSP = 30 tonnes (FMSP = 0.034).
Harvesting the stock at 10 tonnes pa does not deplete the stock
anywhere near 0.63 K, which results in poor yields but is a far
less risky harvest option if long-term viability of the stock is
paramount.

Fig. 4 – Local likelihood density estimates of the posterior
(dashed curve) and prior (solid curve) parameter
distributions for Bayesian state-space Pella–Tomlinson
model with informative lognormal priors on the model
parameters r and K.

3.5. Policy simulation tool

The Bayesian model estimates summarised in Table 2 was
used to parameterise the stochastic simulation model equiv-
alent (9). We illustrate the utility of this simulation model
using another simple harvest example summarised in Fig. 8,
which shows the projected Hawaiian green turtle stock sub-
ject to eight constant annual harvest quotas (0, 1, 2.5, 5, 10,
25, 50, 75 tonnes) ongoing for 25 years from 2005. The model
included the historical harvest (Fig. 1a) so that the projected
stock was recovering from 1973 to 2004 prior to the start of the
25-year simulated harvest period (2005–2029). The stock pro-
jections were then continued for a further 20 years to assess
subsequent stock recovery after the harvest ceased in 2029.
The performance measure was the expected number of green
turtle nesters at the East Island rookery. The no-harvest sce-
nario (2005–2029) is shown in Fig. 8a with observed nester
abundance superimposed and it shows a similar expected
trend to the Bayesian model (cf. Fig. 2e). There was also sig-
nificant uncertainty in the expected nester abundance from
2005 onwards (cf. Fig. 7b). The remaining panels (Fig. 8b–h)
show expected nester trend at the East Island rookery for
the seven simulated annual harvest quotas (1, 2.5, 5, 10, 25,
50, 75 tonnes). The quotas >25 tonnes exceed MSP (Table 2d)
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Fig. 5 – Graphical summary of model sensitivity to alternative forms of prior on carrying capacity K. Panels show local
likelihood density estimates of the posterior distributions for (a) population growth rate r, (b) carrying capacity K, (c) MSP
and (d) FMSP derived from the Pella–Tomlinson model with informative lognormal priors on r and K (solid curve) or uniform
prior on log K (dashed curve).

and so the expected nester abundance shows the anticipated
decline followed by rapid recovery after the simulated har-
vest ended in 2029 (Fig. 8g and h). Recall that MSP for this
Pella–Tomlinson surplus-production model occurs ca. 0.63 K
so that harvests >25 tonnes will deplete the stock towards
0.63 K, which prompts the population to respond with the
maximum potential reproductive output presumably due to
more food per capita at lower density (Balazs and Chaloupka,

Fig. 6 – Estimated mass-size function for the Hawaiian
green turtle stock drawn from nine different foraging
ground population samples. Solid curve shows a
smoothing spline fit to 209 data values (open dots). Dashed
lines show that the expected carapace length (cm SCL) of an
Hawaiian green turtle at the mean mass of turtles
harvested in Hawaiian waters from 1944 to 1973.

2004b). This density-dependent population response is also
evident for a 25 tonnes harvest (Fig. 8f) that is close to MSP for
this model (Table 2d). Harvests <25 tonnes (and <MSP) show lit-
tle response as the stock is not significantly depleted at these
levels (Fig. 8b–e). Expected nester trends from five scenarios
(0, 10, 25, 50, 75 tonnes) are summarised in Fig. 9 so that the
expected harvest effects can be readily compared. It is appar-
ent that even a harvest of 10 tonnes pa is expected to slightly
deplete the Hawaiian green turtle stock (Fig. 9, see also Fig. 7b).
Yet a loss of 10 tonnes pa from all human hazards (fisheries
bycatch, directed harvest, boat strike and so on) is unlikely to
have a significant impact on long-term stock viability, bear-
ing in mind the significant uncertainty in the estimated trend
(Fig. 8e).

4. Discussion

4.1. Population dynamics model ensemble

We have presented a surplus-production model ensemble
that could be useful for developing a better understanding
of sea turtle population dynamics when faced with limited
data and parameter uncertainty. The ensemble comprised a
Bayesian state-space surplus-production model and a com-
plementary stochastic simulation model. Surplus-production
or biomass dynamics models are commonly used in fisheries
stock assessments when the available data comprise only
an aggregate harvest and population abundance time series
(Prager, 2002; Punt, 2003).
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Fig. 7 – Boxplot summaries of constant annual biomass
loss scenarios (baseline in 2004, 0, 10, 30 tonnes pa) over a
25-year harvest sampling period from 2005 to 2029 on (a)
relative biomass (B/K) of the exploitable Hawaiian green
turtle stock and (b) expected nesting population at the East
Island rookery. Projections from Bayesian state-space
model (1) with harvest report rate sampled from a beta(3,5)
pdf. Boxes show interquartile range (25–75th percentile),
white horizontal bar in each box = median, bottom and top
horizontal capped bars = 10th or 90th percentiles.

This is first application of a Bayesian state-space mod-
elling approach to model sea turtle population dynamics but
this approach has been used recently to explore the stock
status of tunas (Meyer and Millar, 1999) and large coastal
sharks (McAllister et al., 2001). There were no ageclass-
specific harvest and demographic information available for
the Hawaiian stock so there was little option but to use
a Bayesian surplus-production model rather than an age-
structured Bayesian state-space model (Rivot et al., 2004).
Nonetheless, the simple surplus-production model used here
based on a Pella–Tomlinson functional form provided an
adequate description of Hawaiian green turtle population
dynamics (Fig. 2). Prager (2002) has shown that estimation
of the Pella–Tomlinson surplus-production function can be
sensitive to data outliers. The Hawaiian green turtle nester
abundance series (Fig. 1b) indeed shows significant temporal
fluctuations but this is not a consequence of measurement
error. In fact, it reflects the nesting variability due to females
regularly skipping nesting seasons that is characteristic of
most green turtle populations (Chaloupka and Limpus, 2001).
Nonetheless, parameter precision might be improved by using
a smoothed nester series such as the smoothing spline trend

shown in Fig. 2e instead of the observed series to reduce any
effect of data volatility on parameter estimation.

Despite data limitations and some imprecise parame-
ter estimates, the Bayesian state-space surplus-production
model, nonetheless, provided meaningful estimates of stock
status and trend as well as some important population and
management measures for the Hawaiian green turtle stock
(Table 2; Figs. 2–3). It is anticipated that this model can be used
to assess Hawaiian stock recovery status and to determine
whether a limited harvest for indigenous cultural purposes
might be demographically feasible (Fig. 7), if allowed under the
US Endangered Species Act. The Bayesian state-space model
parameter estimates were then used to parameterise an easy-
to-use stochastic simulation model equivalent that could be
more accessible and appealing to interdisciplinary conserva-
tion and recovery planning teams. Thousands of Monte Carlo
harvest scenario trials for instance (see Fig. 8) can be simu-
lated in a few seconds using the stochastic simulation model
equivalent of the Bayesian state-model that can take hours
to complete a single scenario run. This model reflects similar
behaviour to the Bayesian model, was parameterised using
Bayesian model output and is far quicker and easier for policy
planning teams to use.

We illustrated the utility of this model ensemble for assess-
ing the recovery and harvest potential of the Hawaiian green
turtle stock (see Figs. 7–9). This ensemble of models is also
useful for evaluating the impact of incidental capture and
drowning of Hawaiian green turtles in local fisheries, which
is an emerging management issue in waters around the main
Hawaiian islands (Nitta and Henderson, 1993). For instance,
it is believed that each year ca. 50 immature turtles are
incidentally caught and drowned in Hawaiian inshore and
recreational fisheries. A loss of 50 immature green turtles
pa is close to the 2.5 tonnes pa harvest scenario shown in
Fig. 8c, which suggests that current inshore fisheries bycatch
is unlikely to have a significant impact on the long-term via-
bility of the Hawaiian green turtle stock. By no means is this
meant to be a comprehensive evaluation of inshore fisheries
impacts on Hawaiian green turtle stock viability. But it is
illustrative of the complementary application of a Bayesian
surplus-production model and a stochastic simulation model
equivalent to help evaluate the impact of various human
related hazards on green turtle populations given significant
data limitations.

4.2. Stock status and trends

Prior to 1974, the Hawaiian stock was subject to significant
human exploitation such as turtle harvesting at foraging
grounds from the mid-1800s, harvesting of nesters and eggs
until the early 1960s, and nesting habitat destruction at the
French Frigate Shoals rookery (Balazs, 1980). The Hawaiian
stock has increased dramatically since harvesting ceased in
1974 (Fig. 1b) and continues to recover despite some relatively
recent but localised outbreaks of a tumour-forming disease,
fibropapillomatosis (Chaloupka and Balazs, 2005), and inci-
dental capture in local inshore fisheries (Nitta and Henderson,
1993). So, the once-seriously-depleted Hawaiian green turtle
stock is well on the way to recovery and a limited annual
harvest <10 tonnes could now be demographically feasible
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Fig. 8 – Summary of constant annual biomass loss scenarios over a 25-year harvest period from 2005 to 2029 on the
expected nesting population at the East Island rookery. Projections from stochastic surplus-production simulation model (7)
with process and observation error and the harvest report rate sampled from a beta(3,5) pdf based on the median posterior
parameter estimates derived from a Bayesian state-space model (Table 2). Panel (a) shows nesting population assuming no
additional loss of turtles from anthropogenic sources—dots show the number of nesters recorded from 1973 to 2004, solid
curve shows expected curve from 1000 Monte Carlo simulations, dashed curves show ± 1 standard deviation of the 1000
simulations. Panel (b) shows loss scenario of 1 tonnes pa (20 turtles @ 45 kg each). Panel (c) shows loss scenario of 2.5 tonnes
pa (∼50 turtles). Panel (d) shows loss scenario of 5 tonnes pa (∼100 turtles). Panel (e) shows loss scenario of 10 tonnes pa
(∼200 turtles). Panel (f) shows loss scenario of 25 tonnes pa (∼500 turtles). Panel (g) shows loss scenario of 50 tonnes pa
(∼1000 turtles). Panel (h) shows loss scenario of 75 tonnes pa (1500 turtles).
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Fig. 9 – Summary of constant annual biomass loss
scenarios over a 25-year harvest sampling period from
2005 to 2029 on the expected nesting population at the East
Island rookery. The five curves here reproduce the expected
biomass curves from Fig. 8a, e–h on the same scale but
without error bands for clarity. Expected curves from
Fig. 8b–d not shown as indistinguishable from the 0 tonnes
(or no loss) pa scenario.

(Fig. 8e). These findings concerning the harvest potential
are especially relevant for supporting informed public pol-
icy debate on the restoration of traditional hunting rights of
indigenous peoples in the Hawaiian Archipelago and else-
where in the Pacific region where traditional practices had
previously ensured the sustainable use of marine resources
(Kinan and Dalzell, 2005). It is important here to appreciate
that a return to commercial harvesting is not being advocated
but the point is to simply show that the Hawaiian stock could
sustain a small offtake of large-immature turtles for cultural
purposes.

4.3. Population and management parameters

The estimated posterior median population growth rate for
the best-fit model was well estimated ca. 5.4% pa (3.1–8.9%;
Table 2a), which is consistent with estimates for other long-
lived late-maturing marine species such as large coastal
sharks (Smith et al., 1998), humpback whales (Chaloupka et
al., 1999) and manatees (Craig and Reynolds, 2004). Manage-
ment parameters such as the exploitation rate at MSP (FMSP)
were also well estimated because they are based on r (Fig. 3b).
The intrinsic rebound or recovery potential for a stock is equiv-
alent to FMSP (Smith et al., 1998), which was estimated for
the best-fit model to be ca. 3.4% (1.6–6.2%). This estimate of
FMSP or the recovery potential is also consistent with esti-
mates for other long-lived late-maturing marine species such
as large coastal sharks (Smith et al., 1998). Marine species with
recovery potentials <4% are generally considered to be highly
susceptible to over-exploitation and can take a very long time
to recover if seriously depleted (Smith et al., 1998). Early-
maturing highly productive marine species such as oceanic
sharks and many fishes have high recovery potentials (>8%)
and may be comparatively better able to respond to intensive
exploitation (Smith et al., 1998). Consequently, the recov-
ery potential (FMSP), or perhaps some fraction of FMSP like

0.75FMSP (Jensen, 2002), might be a useful biological reference
limit for management of a green turtle stock subject to ongoing
harvesting. Using management parameters based on the esti-
mated population growth rate (r) for a green turtle stock seem
to be especially promising because it is one of the parame-
ters that was well estimated using a surplus-production model
given limited data availability. While growth rate and asso-
ciated parameters such as FMSP were well estimated, this
was not the case for some other important parameters. For
instance, carrying capacity K was estimated with significant
uncertainty, irrespective of the priors used (Table 2). More-
over, the surplus-production model used is sensitive to the
choice of carrying capacity prior so that construction of more
appropriate K priors is an important area for future investiga-
tion of the Hawaiian stock. Observation error was found to be
significantly greater than process error, irrespective of model
used (Table 2). This was not surprising because the abundance
index used was the observed nester series that displays sub-
stantial temporal fluctuations in response to environmental
stochasticity (Fig. 1b). Conversely, it is not surprising then that
a long-lived, slow-growing and late-maturing species like the
green turtle would display little temporal fluctuations in the
aggregated stock biomass reflected in the low process error
(Table 2). So, it was evident that the limited data available for
this study (Fig. 1) were quite informative about parameters
or measures like r and FMSP and the process and observa-
tion error but were uninformative about other parameters
such as K.

4.4. Population abundance

It is important to note here that a substantial proportion of a
green turtle stock resides in an oceanic developmental habitat
(Chaloupka, 2002, 2004) and so is not exposed to harvesting,
which occurred exclusively in coastal waters. Moreover, a sub-
stantial proportion of the stock resident in coastal habitats
following recruitment from an oceanic habitat are too small
for any harvesting (Chaloupka, 2002; Balazs and Chaloupka,
2004b). Therefore, only a small proportion of a green turtle
stock is exploitable and it is this “exploitable” biomass that is
modelled using any form of surplus-production function. The
best-fit surplus-production model estimated that the poste-
rior median K biomass of the exploitable stock was 1431 metric
tonnes (Table 2a). The exploitable component of the Hawaiian
green turtle stock comprises mainly large immature to mature
turtles resident in coastal or neritic habitats, which are turtles
>60 cm straight carapace length (>30 kg) and >15 years of age
(see Balazs and Chaloupka, 2004b). Turtles <35 cm SCL reside
in oceanic habitats and so are not exposed to harvesting while
few 35–60 cm SCL coastal habitat turtles would have been har-
vested historically because of limited size and mass (Fig. 6).
The apparent mean turtle mass derived from the reported
commercial landings (Fig. 1a) was 45 kg or 70 cm SCL (Fig. 6),
so that the exploitable component of the Hawaiian stock at K
would comprise ca. 32,000 45 kg turtles.

There are no age- or sizeclass-specific composition data
available for the Hawaiian stock so it is not possible to
directly determine the exploitable fraction of the stock. How-
ever, it can be shown that an equivalent exploitable fraction
(large immature–mature) of the better-studied southern Great
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Barrier Reef green stock would be ca. 10% of that stock
(Chaloupka, 2004). Assuming large immature and mature
turtles also comprise ca. 10% the Hawaiian stock and that
the mean individual mass of these turtles was 45 kg, then
it can be estimated that the Hawaiian stock comprises ca.
320,000 turtles at K (the pre-exploitation abundance). Assum-
ing also that the coastal habitat fraction of the pre-exploitation
Hawaiian stock was ca. 23% (Chaloupka, 2004) then it can be
estimated that the coastal habitat carrying capacity in the
Hawaiian Archipelago is ca. 73,600 green turtles. If the Hawai-
ian stock is currently around 83% of carrying capacity (Fig. 2a),
then there might currently be ca. 61,000 green turtles resi-
dent in Hawaiian coastal habitats. There is ca. 2800 km2 of
potential shallow-water coral reef habitat in the Hawaiian
Archipelago (Rohmann et al., 2005) and ca. 50% of this esti-
mated area is considered suitable habitat for green turtles in
coastal waters (Balazs, unpublished). Therefore, green turtle
density in this habitat is 42 km−2, which is similar to den-
sity estimates for other green turtle populations resident in
similar algae-dominated coastal habitats such as the south-
ern Great Barrier Reef (Chaloupka and Limpus, 2001). The
estimated coastal habitat abundance is also consistent with
the number of females nesting each year at the East Island
rookery (Fig. 1b) assuming that mature females comprise ca.
0.6% of a green turtle stock (Chaloupka, 2004), a 1:1 sex ratio
(Wibbels et al., 1993) and that ca. 33% of mature females nest
each year at the regional rookery (Balazs, 1980; Balazs and
Chaloupka, 2004a). So, while all these estimates are uncer-
tain they are highly plausible for population parameters that
are extremely difficult to derive for a widely dispersed marine
species.

4.5. Density dependence

The Bayesian state-space surplus-production model assumes
an “overcrowding” or compensatory density-dependent pro-
cess affecting the population growth rate at high densities.
The 0.63 K maximum productivity estimate for Hawaiian
greens (Table 2a) is similar to estimates for other large long-
lived marine species such as pinnepeds and cetaceans (Fowler,
1984). These long-lived late-maturing species share the same
lack of resilience to exploitation because maximum productiv-
ity occurs at higher densities but harvesting can deplete these
stocks well below K. This is one reason why conservative har-
vest strategies are essential if long-lived marine species such
as green turtles are to be exploited on a sustainable basis. So,
maintaining the Hawaiian green turtle stock well above 0.63 K
would be a prudent conservation objective.

The surplus-production model can be readily extended to
include depensatory density dependence or an Allee effect.
Depensation involves depressed population growth rates at
low densities, which increases the probability of extinction
(Dennis, 2002). Depensation could occur for green turtle pop-
ulations as a consequence of decreased mating encounters
at low population density (Chaloupka, 2004), which could
then severely restrict the recovery of a depleted population.
Reduced mating encounters have been implicated in several
population collapses including north Atlantic cod (Rowe et al.,
2004) and saiga antelope (Milner-Gulland et al., 2003). There-
fore, depensation might be an important process to consider

Fig. 10 – Morgan-Mercer-Flodin density-dependent mating
success function (probability of an Hawaiian female green
turtle finding and mating with at least one male given
relative density of breeding males and females in the
courtship grounds). The curves show the four-parameter
function for select values of the shape parameter, d, where
the strength of the Allee effect increases with increasing d.
The curve with d = 2 is similar to the curve estimated by the
Bayesian state-space surplus-production model.

in any assessment of the recovery and harvest potential of the
Hawaiian green turtle stock.

Following Dennis (2002), the surplus-production model (4)
with a generalised mating encounter probability function is as
follows:

Pt = Pt−1 + rPt−1(1 − PZ
t−1) − Ht−1

K
− f (Pt−1)Pt−1 (10)

where the probability of not finding a mate f (·) = (1 − ((ab +
cPd

t−1)/(b + Pd
t−1))), which is a Morgan–Mercer–Flodin function

(Morgan et al., 1975) with a = minimum, c = maximum, b = rate
coefficient, d = shape parameter. Since f(·) here is a probabil-
ity on the [0,1] interval then a = 0 and c = 1. Special cases of
the Morgan–Mercer–Flodin function include the hyperbolic or
Michaelis–Menten–Monod function (a = 0, d = 1; see Fig. 10),
which is widely used to model Allee effects (Dennis, 2002),
as well as the Hollings and Hill functions used to model nutri-
ent uptake, predator consumption or other density-dependent
demographic processes (Morgan et al., 1975). Estimation of
the Bayesian state-space surplus-production model (10) pro-
vided posterior median estimates of the depensation function
parameters b = 0.002 (95% credible interval: 0.0003–0.016) and
d = 1.67 (1.02–4.92). A non-informative inverse-gamma prior
was used for b and an vague uniform prior was used for d.
Based on DIC there was little improvement in model fit com-
pared to any of the models listed in Table 2 but the rate
coefficient (b) is significantly >0 suggesting the data were infor-
mative of an Allee effect. So while the depensation function
parameters (b, d) are quite imprecise for the Hawaiian data,
they are nonetheless supportive of some form of hyperbolic-
like depensation process (Fig. 10). This is consistent for species
with multiple paternity such as the green turtle where a
shortage of males (and hence mating encounters) would only
be likely at very low population levels. It is apparent for
the Hawaiian stock that depensation may occur when the
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stock falls well below 5% of the pre-exploitation biomass
where the mating encounter probability decreases dramati-
cally (Fig. 10). Hence, depensatory processes could increase
the risk of extinction for the Hawaiian stock if it were to be
depleted below 5% of pre-exploitation biomass.

It is unlikely that the Hawaiian stock or most other exist-
ing green turtle stocks were reduced by human exploitation
to such low levels (Chaloupka and Limpus, 2001; Balazs and
Chaloupka, 2004a). However, the Cayman Islands green tur-
tle nesting population in the Caribbean was abundant prior
to European settlement and was apparently reduced to near-
extinction by over-exploitation (Bjorndal et al., 2000). Cayman
nesting abundance has shown little recovery over the last
century (Aiken et al., 2001) and this may be indicative of
depensation compounded by no recolonisation from other
regional Caribbean stocks. Depensation was included in recent

stochastic simulation models of the metapopulation dynam-
ics of the southern Great Barrier Reef green turtle stock
(Chaloupka, 2004) and it warrants further consideration in the
management of green turtle stocks that are subject to harvest-
ing.
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Appendix A. Bayesian non-linear
surplus-production state-space model in
WinBUGS with both process and observation
error and harvest under-reporting parameter
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Appendix B. Non-linear stochastic simulation model in MADONNA with process and observation error
and parameters based on Bayesian non-linear state-space model
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