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INTRODUCTION

To compensate for the high energy costs of repro-
duction, organisms must choose between 2 types of
strategies: income breeding, whereby an animal
feeds during reproduction, or capital breeding,
whereby an animal stops feeding and relies solely on
its body reserves (Drent & Daan 1980). Sea turtles are
commonly considered as capital breeders, storing fat
reserves at their foraging grounds then ceasing to

feed during the breeding−nesting season (Drent &
Daan 1980, Goldberg et al. 2013, Perrault et al. 2014),
which occurs every 1 to 4 yr (Miller 1997). During this
breeding−nesting period, gravid females must meet
the high energy costs incurred by multiple activities
that occur during the breeding−nesting season; i.e.
migrating from the foraging grounds, mating, travel-
ling to and from the nesting beach, incubating the
clutch (50 to 150 eggs), laying eggs several times per
season depending on the species (Miller 1997, Wal-
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buoyancy. This species shows a unique ability to tolerate extreme environments in this inter-
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this population in response to the atypical and estuarine habitat of the Maroni river mouth.

KEY WORDS:  Chelonia mydas · Guiana coast · Habitat use · Diving behaviour · Satellite tracking

Resale or republication not permitted without written consent of the publisher

This authors' personal copy may not be publicly or systematically copied or distributed, or posted on the Open Web, 
except with written permission of the copyright holder(s). It may be distributed to interested individuals on request.



Mar Ecol Prog Ser 555: 235–248, 2016

lace et al. 2005, Walcott et al. 2012), and migrating
back to the foraging areas — all potentially without
feeding during at least 2 consecutive months (Scho -
field et al. 2013, Hays et al. 2014).

To limit the continuous loss of energy during the
inter-nesting season, sea turtles have developed mul-
tiple strategies to maximize their reproductive out-
put. For example, females have been reported to
commonly rest on the seabed during U-shaped dives,
as observed in green (Hays et al. 2000), hawksbill
(Houghton et al. 2008, Walcott et al. 2013), logger-
head (Sakamoto et al. 1993, Houghton et al. 2002),
and leatherback turtles (Reina et al. 2005). ‘Assisted
resting’ has also been reported in Caribbean hawks-
bill turtles, which wedge themselves under coral
reefs on the seafloor substrate during the inter-nest-
ing season. Alternatively, gravid females can rest in
mid-waters by controlling their lung volume to
achieve neutral buoyancy, thereby limiting their
energy expenditure (Minamikawa et al. 1997, Hays
et al. 2000). In addition to diving adjustments, female
sea turtles can restrict their movements by remaining
close to the nesting beach (Stoneburner 1982, Hays
et al. 1999, Blanco et al. 2013, Maxwell et al. 2014,
Esteban et al. 2015). During the inter-nesting period,
females can also show a preference for locations
where optimal water temperatures enhance egg
development prior to laying (Schofield et al. 2009,
Fossette et al. 2012).

While some sea turtle populations have developed
strategies to conserve energy during the inter-nest-
ing season, others use specific behaviours to increase
their energy reserves. Depending on local habitat
conditions and the availability of food resources,
gravid females can feed during the inter-nesting sea-
son (Hays et al. 2002c, Schofield et al. 2006, Georges
et al. 2007). This behaviour has been highlighted for
the green turtle in Cyprus (Hays et al. 2002c), where
individuals perform shallower dives to forage on a
site with seagrass beds, but has not been observed in
females nesting in Ascension Island, where the
apparent absence of a food supply prevents females
from feeding during the inter-nesting season. Strong
behavioural plasticity occurs in the case of habitat
loss, when some individuals from the same popula-
tion travel long distances to reach alternative breed-
ing−nesting sites, whilst others remain close to the
nesting beach, as recorded in loggerhead (Schofield
et al. 2010a), hawksbill (Esteban et al. 2015), olive
ridley (Hamel et al. 2008), leatherback (Shillinger et
al. 2010) and green turtles (Troëng et al. 2005).

The dispersal and diving behaviour of gravid green
turtles has been widely studied in many different

nesting sites and shows strong inter-individual and
inter-population variability, but to date, no informa-
tion is available for the population nesting in the
Suriname−French Guiana rookery. This site hosts
one of the largest green turtle rookeries on the north-
eastern part of the South American coast (Schulz
1975, Chevalier et al. 1998, Baudouin et al. 2015,
Chambault et al. 2015), with 869 females and 2228
clutches counted in 2015 in French Guiana (Mast et
al. 2016). The waters of the Guianese continental
shelf contain large amounts of sediments and sus-
pended materials continuously discharged by the
Amazon River (Milliman & Meade 1983, DeMaster et
al. 1996), leading to low levels of irradiance (Molleri
et al. 2010) and presumably limiting the development
of seagrass, one of the main foods consumed by adult
green turtles. It is important to mention that although
it is widely acknowledged that green turtles consume
seagrass, there is no evidence to date of this occur-
ring in Surinamese green turtles; Bjorndal (1982)
sug gests that they may feed on macroalgae. Located
on both sides of the border between Suriname and
French Guiana, this rookery is also influenced by the
Maroni and the Mana rivers. Their mean discharge
rates of 1680 vs. 300 m3 s−1, respectively (Lambs et al.
2007), make the water highly turbid and brackish
(Jounneau & Pujos 1988) and bring high volumes of
freshwater to the coast, especially during the rainy
season (Lambs et al. 2007). This creates unusual estu-
arine conditions for sea turtles.

This study aims to investigate how gravid green
turtles nesting in Suriname and French Guiana have
adapted to the biological conditions of this estuarine
habitat during the inter-nesting season. Satellite
telemetry was used to assess the behavioural adjust-
ments of 26 adult females in terms of home range and
diving behaviour, by recording the movements and
environmental conditions (temperature and salinity
of the water) experienced by each individual. This is
the first study to track this specific population of
green turtles during the inter-nesting season in an
unusual habitat influenced by large rivers, i.e. the
Amazon, the Maroni and the Mana rivers.

MATERIALS AND METHODS

Ethics statements

This study meets the legal requirements of the
countries where it was carried out, and follows all
 institutional guidelines. The protocol was approved
by the Conseil National de la Protection de la Na ture
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(CNPN; www.conservation-nature.fr/ acteurs2. php?
id=11), a branch of the French Ministry for Ecology,
Sustainable Development and Energy acting as an
ethics committee in French Guiana and Suriname
(permit number: 09/618). After the evaluation of the
project by the CNPN, fieldwork was carried out in
strict accordance with the recommendations of the Po-
lice Prefecture of French Guiana (Cayenne, France), in
order to minimize disturbance to the animals.

Satellite tag deployment

During the inter-nesting season, 16 Argos-linked
Fastloc GPS tags (MK10, Wildlife Computers) were
deployed on adult female green turtles from Febru-
ary to June 2012 on both sides of the Maroni River: at
Awala-Yalimapo in the Amana Nature Reserve,
French Guiana (5.7° N, 53.9° W, n = 8), and in the
Galibi Nature Reserve in Suriname (5.4° N, 53.5° W,
n = 8; see Fig. 1). During the same period in 2014,
10 additional females in the Amana Nature Reserve
were equipped with Conductivity-Temperature-
Depth-Fluorometer Satellite Relayed Data Loggers
(CTD-SRDL; the Sea Mammal Research Institute
Instrumentation). The attachment procedure fol-
lowed the standard methods described in Baudouin
et al. (2015). During tag deployment, measurements
of the curved carapace length (CCL) were taken, and
body mass was then calculated using the method of
Hays et al. (2002a). A Platform Terminal Transmitter
(PTT) was assigned to each turtle equiped with a tag.

Data collection

Inter-nesting route data were extracted following
the procedure described by Baudouin et al. (2015).
The Argos-linked Fastloc GPS tags recorded Argos
locations and GPS positions of the turtles at 4 h inter-
vals (10% of the locations transmitted). These tags
also provided diving data, i.e. maximum dive depths,
dive durations and in situ temperature data, binned
as 4 h period histograms. Maximum depths were col-
lected in different bins, every 10 m from 10 to 100 m,
then every 50 m from 100 to 250 m. Maximum dive
durations were stored from 30 s to 1 min, then every
minute from 1 to 5 min, every 5 min from 5 to 20 min,
and finally every 10 min from 20 to 60 min. In situ
temperatures were recorded during dives from 20 to
32°C, every 1°C.

The CTD-SRDL tags provided the locations of the
turtles via Argos data, and recorded simplified pro-

files of the diving parameters (dive depth, time at
depth, dive duration and post-dive surface interval),
and oceanographic data in the form of vertical tem-
perature and salinity profiles taken during the ascent
phase of the turtles’ dives (Boehme et al. 2009). The
CTD-SRDL tags were programmed to send summa-
rized dive profiles using the compression algorithm
described by Fedak et al. (2001), providing 4 depth
records for each dive (instead of the single maximum
depth per dive provided by Argos-Fastloc GPS tags).
Temperature and salinity data were quality controlled
using the procedure described in Roquet et al. (2011),
with an estimated accuracy of 0.02°C and 0.05 psu.

Data pre-filtering

The tags were deployed at the beginning of the
inter-nesting season, and therefore recorded location
data for post-nesting migration. Following the proce-
dure described in Baudouin et al. (2015), a spatial
query was performed via ArcGIS version 10.1 (ESRI)
to identify the date of migration departure. Only
positions corresponding to the inter-nesting season
were retained for analysis, as indicated in Chambault
et al. (2015).

Using the same approach as Heerah et al. (2013), a
Kalman-filtering algorithm was then applied (CLS;
Collecte Localisation Satellites) to enhance tag posi-
tion estimates (Argos and GPS) by accounting for
Argos location errors (Patterson et al. 2010, Lopez et
al. 2014). The General Bathymetric Chart of the
Oceans database (GEBCO, www.gebco.net/; 30 arc-
second 1 km grid) was used to discard any locations
on land. Positions associated with a speed of >5 km
h−1 (Hays et al. 2004, Schofield et al. 2013) and those
with location Class Z (class associated with the raw
location before Kalman filtering) were considered
insufficiently accurate and were removed.

Data analyses

The ‘trackDistance’ function from the ‘trip’ pack-
age in R (Luque 2007) was used to calculate distance
travelled and elapsed time between locations.
Observed speed was then derived from these values.
Distance to shore was calculated by finding the
shortest distance to the coastline for each turtle loca-
tion, using the ‘dist2Line’ function from the ‘geo -
sphere’ package (Robert 2015). Distance to nesting
site, i.e. the location where each turtle was initially
tagged, was also calculated for each position.
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All statistical analyses were performed using R
software version 3.2.2 (R Core Team 2014). Before
being submitted to statistical tests, all samples were
checked for normality (Shapiro-Wilk test) and homo-
geneity of variance (Levene’s test). The results of
these tests determined the subsequent use of either
parametric or nonparametric tests for sample analy-
sis, with a significance level of α = 0.05. Values are
means ± SD.

For the diving variables, we discriminated between
benthic and pelagic dives by calculating the differ-
ence between the bathymetry at the dive location
and the maximum dive depth recorded by the CTD-
SRDL for the same location for each dive. Dives with
a maximum depth within 1 m of the seabed were
classified as benthic dives, and those with a maxi-
mum depth beyond 1 m of the seabed were pelagic
dives. Data from the Argos-linked Fastloc GPS tags
(n = 16) were not used due to their coarser resolution
(1 dive depth every 10 m). At some locations, depth
difference was greater than the bathymetry depth,
possibly due to the error generated by the shift
between the incorrect Argos positions and the con-
siderable movements of the turtle during the dive.

To obtain an idea of the dive patterns, we calcu-
lated the Time of Allocation at Depth (TAD) index by
using the 4 inflection points of the summarized pro-
files provided by the CTD-SRDL tags. Based on the
method of Fedak et al. (2001), TAD calculation makes
it possible to obtain relevant information about
where turtles concentrate their activity within the
dives, i.e. V-shaped dives for 0.5 ≤ TAD < 0.75
(exploratory dives) and U-shaped dives for 0.75 ≤
TAD < 1 (activity centered at the bottom of the dive,
linked to either foraging or resting activity). Follow-
ing the method of Plot et al. (2015), the average rate
of change of depth was fixed at 1.4 m s−1. Bottom time
was calculated as the time spent below 80% of the
maximum depth (Heerah et al. 2013), and the
descent and ascent rates (in m s−1) were also deter-
mined. The day hours were set from 06:00 to 18:00 h
local time to assess potential diel dive patterns.

Home range estimation

In order to display residency patterns, both the
Argos and GPS positions were used to estimate home
ranges by mapping kernel density distributions
(Worton 1989). Although GPS locations are more
accurate than Argos locations for the quantification
of home ranges (Schofield et al. 2010b), the low num-
ber of GPS locations transmitted (10%) made it

impossible to base the kernel calculation on GPS
data alone. To minimize autocorrelation in spatial
analyses, median daily locations were generated for
each turtle (Schofield et al. 2010b, 2013, Revuelta et
al. 2015). A kernel density analysis was then carried
out for each year of tag deployment using the ‘kerne-
lUD’ function from the ‘adehabitatHR’ package in R
(Calenge 2006). As kernel density cannot always be
calculated using the least square cross-validation
method (Seaman & Powell 1998), the smoothing
parameter was set using the default approach, i.e.
the ad hoc method (Calenge 2006). Ninety percent
density contours were used to represent the broad
home range, and 50% density contours were used
to indicate the core area. The corresponding area
(ex pressed in km2) was then calculated within each
kernel contour.

Nesting events and basking identification

Nesting events were identified using direct obser-
vation during nocturnal surveys rather than evidence
of haul-outs from tracking data. This choice is
explained by the lack of precise resolution from the
Argos (>1500 m) and GPS locations (<100 m) and the
potential inaccuracy of the GEBCO database in such
coastal habitat, making the identification of nesting
events unreliable if based on tracking data alone.
Daily nocturnal patrols were therefore performed
from February to July during each year of tag
deployment (2012 and 2014) on Awala-Yalimapo
beach (Amana Nature Reserve) to observe the entire
nesting season of green turtles in this rookery. Each
observed female was scanned to identify a Passive
Integrated Transponder (PIT). If the individual was
not tagged, a PIT was inserted in the top right triceps
muscle. The GPS location of the animal, time, PIT
number, beach location (sand, bank, vegetation or
water) and behaviour (rise, first sweep, digging, sec-
ond sweep, laying, filling or U-turn) were systemati-
cally recorded for each individual throughout the
nesting periods. To avoid any possibility of false nest-
ing events affecting the results, only laying behav-
iour was retained for analysis.

The haul-out information recorded by the wet/dry
sensor of the tags was also used to identify surface
resting/basking behaviour. The Fastloc-GPS tag sen-
sor enters haul-out state after 20 consecutive dry
minutes, and exits haul-out state if it remains wet for
30 s or more. For CTD-SRDL tags, a haul-out was
recorded when the saltwater switch dry time
exceeded 10 min, and the end of the haul-out was
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registered after a submersion time of at least 40 s.
Any haul-outs that were recorded during the day-
time were considered as Extended Surface Times
(ESTs; Hochscheid et al. 2010), the latter being con-
sidered as evidence of surfacing/resting behaviour,
as green turtles nest exclusively by night on this site
(D. Chevallier unpubl. data).

RESULTS

Capture-mark-recapture data

A total of 475 female green turtles were observed
nesting at Awala-Yalimapo beach (French Guiana)
from 30 January to 12 July 2012; 669 were observed
during the same period in 2014. The average inter-
nesting interval between 2 consecutive clutches was
12.8 ± 1 d in 2012 (n = 2329) and 12.6 ± 1.4 d in 2014
(n = 2160). The activity peak occurred in April of both
years, with 2329 nesting events recorded in 2012 and
2160 in 2014. Nocturnal patrols recorded an average
2.4 ± 1.6 nesting events per turtle during the tracking
period (range: 1 to 5; Table 1).

General tracking data

The inter-nesting data recorded from the tags cov-
ered the period from February to July in 2012 and
2014. The tag instruments transmitted for an inter-
nesting tracking duration ranging from 4 d (#115458)
to 95 d (#130766; see Table S1 in the Supplement
at www. int-res. com/ articles/ suppl/ m555 p235 _ supp.
pdf) for an average of 254 ± 144 locations (5.4 ±
1.7 locations d−1). Only 1 of the 16 turtles equipped
during the inter-nesting season in 2012 (#115459) did
not transmit any location data during the inter-nest-
ing season. The CCL of these green turtles varied
from 103 to 133 cm (mean: 115.5 ± 5.8 cm; #130776
vs. #130773) and their body mass ranged from 130.8
to 238.1 kg (mean: 177 ± 16.5 kg; #130776 vs.
#130773).

Displacement and home range

Total distance travelled varied from 28 km
(#115458) to 2627 km (#130766; Table 1). Gravid
green turtles travelled over longer distances in 2014
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PTT Instrument Nesting Distance Distance to shore Distance to nest Speed 
events (km) (km) (km) (km h−1)

115445 MK10 3 928 6.9 ± 7.2 24 ± 29 1.6 ± 1.3
115446 MK10 1 1323 3.7 ± 2.8 8.1 ± 5.1 1.1 ± 1.1
115447 MK10 1 764 2.3 ± 2.0 8.4 ± 4.6 0.8 ± 0.9
115448 MK10 1 727 2.2 ± 1.7 7.6 ± 3.8 0.8 ± 0.9
115449 MK10 1 547 2.9 ± 2.4 14 ± 11 0.8 ± 0.9
115450 MK10 1 881 2.7 ± 2.2 11 ± 3.1 1.1 ± 1.1
115451 MK10 5 871 4.5 ± 4.7 14 ± 14 0.9 ± 1.1
115452 MK10 1 523 3.1 ± 4.2 11 ± 5.1 0.9 ± 1.1
115453 MK10 1 479 2.9 ± 2.1 9.9 ± 3.0 0.7 ± 0.8
115454 MK10 1 812 2.4 ± 2.0 8.6 ± 4.8 1.1 ± 1.1
115455 MK10 1 486 4.3 ± 3.0 13 ± 7.3 1.0 ± 1.0
115456 MK10 2 688 2.4 ± 2.3 14 ± 16 1.2 ± 1.1
115457 MK10 1 362 2.7 ± 1.8 5.9 ± 1.8 0.8 ± 0.9
115458 MK10 1 28 0.6 ± 0.5 2.8 ± 1.9 1.1 ± 0.9
115460 MK10 2 305 2.7 ± 2.2 7.8 ± 6.0 1.3 ± 1.1
130766 CTD-SRDL 4 2627 16.0 ± 26.0 96 ± 110 1.5 ± 1.2
130767 CTD-SRDL 5 533 1.6 ± 2.0 5.2 ± 8.3 0.9 ± 1.0
130768 CTD-SRDL 5 849 1.5 ± 1.6 12 ± 11 0.9 ± 0.9
130769 CTD-SRDL 5 570 5.1 ± 5.4 18 ± 17 1.0 ± 1.0
130770 CTD-SRDL 2 345 3.0 ± 2.6 6.0 ± 3.9 0.9 ± 1.1
130771 CTD-SRDL 4 671 5.3 ± 3.8 18 ± 16 1.2 ± 1.1
130773 CTD-SRDL 5 535 2.5 ± 2.4 6.6 ± 4.9 0.9 ± 0.9
130776 CTD-SRDL 2 680 2.9 ± 2.6 84 ± 56 1.5 ± 1.4
131354 CTD-SRDL 4 1578 8.8 ± 18 35 ± 59 1.4 ± 1.3
131355 CTD-SRDL 1 286 3.8 ± 4.4 26 ± 18 1.0 ± 0.9

2.4 ± 1.6 736 ± 510 3.8 ± 3.1 18.6 ± 22.7 1.1 ± 0.2

Table 1. Horizontal movements of the 25 gravid green turtles Chelonia mydas tracked in 2012 and 2014. PTT: turtle ID. Values 
are mean ± SD
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(867.4 ± 714.6 km) than the females tracked in 2012
(648.2 ± 310.6 km). In 2014, 2 individuals (#130766
and #131354) performed large loops towards the
French Guianese and the Brazilian coasts, whereas
the 8 other turtles mostly remained close to the
shoreline during the inter-nesting season (Fig. 1).
The distance to shore ranged from 0.6 ± 0.5 km
(#115458) to 16 ± 26 km (#130766), with turtles
remaining on average within 3.8 ± 3.1 km from the
coastline (Fig. 1, Table 1). The green turtles re -
mained within 18.6 ± 22.7 km of the nesting site
(range: 2.8 to 96 km; #115458 vs. #130766, respec-
tively). The average travel speed was 1.1 ± 0.2 km h−1

(range: 0.7 to 1.6 km h−1; #115453 vs. #115445,
respectively; Table 1).

A daily average of 5.5 ± 3.6 locations was retained
to perform the kernel analysis. There was clear inter-
annual variability in the habitat used by turtles: in
2012, the broad home range (90% kernel estimator)
measured 351.3 km2 and the core home range (50%
kernel estimator) covered only 89.9 km2 (Fig. 2A),
whereas the 10 gravid females tracked in 2014 used

a much broader home range (up to 42 times larger
than in 2012) with a 90% kernel contour that covered
15 050 km2, concentrating their activity within a
1620.8 km2 area (Fig. 2B).

Diving behaviour

Data from Argos-Fastloc GPS tags

The 15 Argos-linked Fastloc GPS tags deployed in
2012 provided 5522 records of maximum dive depths
and 5305 records of dive durations. Maximum dive
depths differed significantly between individuals
(Kruskal-Wallis rank sum test, p < 0.001), and varied
from 0 to 150 m, with 80% of the dives performed in
the upper 10 m (Fig. 3A). Dive durations differed sig-
nificantly between individuals (Kruskal-Wallis rank
sum test, p < 0.001) and ranged from 30 s to 70 min,
with 35% of the dives lasting up to 5 min (Fig. 3B).

The number of ESTs recorded by the Argos-Fastloc
GPS tags varied from 1 to 6 per individual (#115447,
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#115452, #115457 vs. #115455), with an average of
1.7 ± 1.0 per female, and mostly occurred late in the
afternoon, at 17:00 h. The possible inaccuracy of the
bathymetry extracted in this coastal region (~1 km
resolution) made it impossible to differentiate be -
tween terrestrial and surface basking. Unfortunately,
the Argos-Fastloc GPS tags did not provide any infor-
mation regarding EST duration.

Data from the CTD-SRDL tags

The 10 CTD-SRDL tags deployed in 2014 provided
reliable data for 1237 summarized dive profiles.
Average maximum dive depth was 2.6 ± 2.1 m, rang-
ing from 1 to 32.5 m, and 59% of the dives were per-
formed within the upper 2 m (Fig. 3C). Maximum
dive depths were significantly different between
individuals (Kruskal-Wallis rank sum test, p < 0.001).
The maximum dive depth did not differ significantly
between day and night (2.5 ± 1.5 vs. 2.8 ± 2.7 m;
Mann-Whitney U-test, p = 0.5723).

Dive durations varied from 30 s to 35 min and
lasted on average 4.0 ± 4.7 min, with 79% of the
dives lasting <5 min (Fig. 3D). Dive durations dif-

fered significantly between individuals (Kruskal-
Wallis rank sum test, p < 0.001). Dive duration was
not significantly different between day and night
(3.8 ± 4.7 vs. 4.2 ± 4.9 min; Mann-Whitney U-test, p =
0.4819).

Post-dive surface duration ranged from 0.06 s to
8.1 min, for an average duration of 1.3 ± 1.9 min. Sev-
enty percent of the post-dive surface intervals lasted
<1 min, and differed significantly between individu-
als (Kruskal-Wallis rank sum test, p < 0.001) (Fig. 3E).
Surface duration did not differ significantly between
day and night (1.33 ± 1.87 vs. 1.42 ± 2.02 min; Mann-
Whitney U-test, p = 0.3993).

The average TAD was 0.71 ± 0.15, indicating
mainly V-shaped dives. However, other dive shapes
were also performed by the green turtles, as 43% of
the dives were associated with a TAD ranging
between 0.75 ≤ TAD < 1 (resting U-shaped dives),
and 47% were associated with a TAD between 0.5 ≤
TAD < 0.75 (exploratory V-shaped dives). Bottom
time lasted on average 2.5 ± 4.0 min, ranging from 0
to 34.1 min, meaning that the turtles spent 52.3% of
the diving time at the bottom. Average descent rate
was 0.21 ± 0.20 m s−1 while the average ascent rate
was 0.03 ± 0.03 m s−1. Of the 1237 summarized dives
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retained for the analysis, 62% were benthic dives
and 38% were pelagic, showing a difference be -
tween bathymetry and maximum dive depth >1 m
(Fig. 4).

The number of ESTs varied between 3 and 29 per
individual (#131355 vs. #130767), with an average of
13.6 ± 9.5 per female during this period. EST duration
ranged from 10 min (#130767 and #130771) to
1920 min (#131355), with an average duration of 210
± 288 min.

Temperature and salinity data

During the 2012 inter-nesting season, the Argos-
Fastloc GPS tags recorded 2169 temperature values
ranging from 24 to 33°C, for an average temperature
of 28.4 ± 1.1°C. Eighty-six percent of the dives were
performed in warm waters with temperatures
between 27 and 29°C (Fig. 5); there were also inter-
individual differences in the mean temperature
(Kruskal-Wallis rank sum test, p < 0.001). A slight in -
crease was observed in water temperature through-
out the tracking months, with the coolest values in
April (mean: 28.2 ± 1.2°C) and the warmest in June
(29.0 ± 0.9°C).

During the 2014 inter-nesting season, 57 of the
CTD profiles analysed recorded a total of 516 tem-
perature and salinity values. Salinity ranged from 1.2
to 35.5 psu (mean: 24.6 ± 10.3 psu), and temperatures
varied from 25.3 to 28.4°C (26.8 ± 0.5°C) (Fig. 6). All

turtles used a broad range of oceanographic struc-
tures, especially in terms of salinity (Fig. 6).

DISCUSSION

This tracking of green turtles from Suriname and
French Guiana during the inter-nesting season pro-
vides the first data to describe their inter-nesting
events, habitat use, dispersal and diving behaviour.
These results highlight the various behavioural
adjustments of this population in response to the
atypical and estuarine habitat of the Maroni river
mouth.
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Inter-nesting events

Direct observation (nocturnal patrols) showed the
inter-nesting interval to be 12.8 ± 1 d in 2012 (n =
2329) and 12.6 ± 1.4 d in 2014 (n = 2160) (range: 5 to
18 d), which is within the range recorded for other
green turtle populations in the Atlantic (range: 10 to
14 d; Carr et al. 1974, Hays et al. 2002b), Caribbean
(9 to 13 d; Bjorndal & Carr 1989, Esteban et al. 2015),
and Pacific (10 to 15 d; Blanco et al. 2013). Because
the turtles were equipped with transmitters on both
sides of the Maroni river mouth, we can be certain
that they were nesting on both the Surinamese and
French Guianese beaches. However, the number of
nesting events per female may be underestimated as
the nocturnal patrols were only performed on the
beaches of French Guiana, which may explain the
long inter-nesting interval for some individuals.
Simultaneous direct observation of individuals on
both sides of the river mouth therefore appears to be
a crucial source of additional information for tracking
data, and annual monitoring on the Surinamese side
is also necessary in order to paint a clear picture of
the inter-nesting period.

Habitat use

Despite the high inter-annual variability of the
habitat, kernel analysis indicated that the turtles
spent most of their time in a relatively small area
measuring 512.7 km2 (50% contour). Although this
core range was significantly larger than the 50%
contour for East Pacific green turtles (3 km2; Blanco
et al. 2013), the French Guiana turtles concentrated
their activity close to the nesting beach (range: 2.8 to
96 km, mean: 18.6 ± 22.7 km). This mirrors habitat
use by green turtles in Florida (6 to 11 km; Hart et al.
2013). Gravid green turtles may therefore reduce the
energy costs of locomotion by limiting their move-
ments, as their home range is dictated by their meta-
bolic rate (Slavenko et al. 2016).

Our estimation of home range should, however, be
interpreted with caution, as the kernel densities were
obtained from both Argos and GPS data. In some
cases, the estimated Argos position can be some km
away from the true location (Rutz & Hays 2009). This
explains the high number of locations on land (32%)
that had to be discarded from the analysis. The use of
Argos-Fastloc GPS tags made it possible to increase
the accuracy of the location estimations, which is
 crucial when dealing with resident animals whose
movements occur on a very small scale. Argos loca-

tions had to be included in the kernel analysis, as the
unique surfacing behaviour of green turtles (brief
and slanting) resulted in the transmission of a very
low number (7%) of GPS locations. The low number
of GPS positions could also be explained by the GPS
sampling interval, which was fixed to 4 h. Although
a shorter sampling interval would have increased
the number of GPS locations recorded, it would
have also reduced the lifespan of the tag. This would
have been counterproductive, as our objective was to
record both the inter-nesting and migration periods
for each tracked individual.

The associated habitat was characterized by low
salinity and highly turbid waters resulting from the
large river outputs that are continuously discharged
onto the Guiana continental shelf (Jounneau & Pujos
1988, Froidefond et al. 2002). Close to the Maroni
and Mana rivers, the Kaw estuary, located 250 km
southeast of the rookery, has a wide range of salini-
ties (range: 0.1 to 19 psu) that vary according to the
combined effect of rainfall (2000 to 4000 mm yr−1;
Lambs et al. 2007) and tides (Jounneau & Pujos 1988,
Lam-Hoai et al. 2006). Négrel & Lachassagne (2000)
reported that the salinity of the Kaw estuary dropped
to 0.1 psu during the rainy season (April to July), sim-
ilar to the salinity values recorded by tags on the tur-
tles in our study. The green turtles were tracked from
the beginning of the long rainy season (April to
June), and the resulting data confirms that they
crossed highly contrasted ecosystems in terms of
salinity, varying from oligohaline (<5 psu) to ultraha-
line habitats (>35 psu). Such results are consistent
with the highly variable water properties recorded in
the Maroni estuary (salinity range: 0 to 20 psu) due to
the high rainfall (mean: 2000 to 2500 mm; data from
Météo-France) and the flow of the river during this
period (mean discharge: 1680 m3 s−1; Jounneau &
Pujos 1988, Artigas et al. 2003). Chelonia mydas
therefore shows a high tolerance to a wide range of
environments in French Guiana, as observed in the
loggerhead turtle in southwest Florida (salinity
range: 0 to 40 psu; Foley et al. 2006) and the Kemp’s
ridley turtle in the Gulf of Mexico (Metz 2004).

The water temperatures experienced by tracked
green turtles (mean: 26 to 28°C) were similar to those
recorded by the olive ridley sea turtles tracked over
the Guiana shield (26.2 to 27.8°C; Plot et al. 2012).
The temperature range appeared to be slightly wider
for the green turtles (range: 23 to 33°C) than that
recorded by their conspecifics from the Atlantic
(range: 27 to 28°C; Hays et al. 2002b) and Pacific
oceans (range: 27 to 29°C; Blanco et al. 2013). The
higher temperatures observed in French Guiana
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could be explained by the warmer freshwater of the
Maroni and Mana rivers (Nikiema et al. 2007), espe-
cially during the period of maximum river discharges
from May to June (Artigas et al. 2003). Indeed, the
highest temperatures recorded in 2012 (29 to 33°C)
were mostly located at the mouth of the river, close to
the Surinamese nesting beach. Furthermore, the
high temperature values recorded in our study are
consistent with the samples taken by Négrel &
Lachassagne (2000) in the Maroni estuary (range:
23.8 to 33.4°C).

Distance to shore

All 25 females tracked in this study remained close
to the shore throughout the inter-nesting season, i.e.
within 3.8 ± 3.1 km of the coastline. Similar patterns
were observed in green turtles nesting in Tortu guero,
Costa Rica, which stayed within 30 km of the coastline
(Troëng et al. 2005). The females tracked in the pres-
ent study remained essentially close to their rookery
(20.5 ± 44.4 km), showing strong nest-site fidelity.
This has been highlighted for green turtles in the At-
lantic (Hart et al. 2013) and Pacific oceans (Blanco et
al. 2013). By remaining close to their nesting site,
gravid green turtles are probably saving energy for
oviposition. However, some inter-individual differen -
ces were observed (range: 2.8 to 96 km), particularly
for one turtle that travelled over 368 km from the nest-
ing beach (#130766). Similar extensive movements
during the inter-nesting season have been recorded
in loggerhead turtles in the Mediterranean Sea
(Schofield et al. 2010b), as some females may leave
the vicinity of the rookery without necessarily nesting
on alternative sites. In contrast, some females do show
a lack of nest-site fidelity and nest on alternative sites,
as observed in green and hawksbill turtles from the
Lesser Antilles in the Caribbean (Esteban et al. 2015).
The associated travel speeds of the turtles tracked in
our study (1.1 ± 0.2 km h−1, range: 0.7 to 1.6 km h−1)
were close to those reported by Troëng et al. (2005)
(mean: 0.9 ± 1.0 km h−1) and to those recorded in the
green turtle population of Ascension Island (mean:
1.5 km h−1, range: 0.9 to 3.5 km h−1; Carr et al. 1974).

Diving behaviour

The dives performed in 2014 by the green turtles
during the inter-nesting season were shallow (59% of
dives <2 m) and short (79% of dives <5 min). Similar
behaviour has been observed in East Pacific green

turtles tracked from Costa Rica (69% <5 m; 72% be-
tween 2 and 10 min; Blanco et al. 2013), and also in
the leatherback population using the same Awala-
Yalimapo nesting site in French Guiana (59% <5 m,
60% <6 min; Fossette et al. 2007). Such behaviour in-
dicates that the gravid turtles studied are mainly in-
fluenced by the bathymetry of the inter-nesting habi-
tat. The GEBCO database shows bathymetry to be
below 5 m at the mouth of the Maroni River, where
the turtles spend most of their time. The dive
durations were much shorter than those recorded in
Ascension Island green turtles, which mainly rested
during the inter-nesting season (mean: 22.1 vs. 7.3 min
while migrating; Hays et al. 1999). Additionally, green
turtles must reach an optimal depth of 19 m to achieve
negative buoyancy for resting after fully inflating
their lungs at the surface (Hays et al. 2000). The short,
shallow dives of the French Guianese green turtles in
the very shallow habitat of the Maroni River mouth
could therefore be linked to short-term resting
activity caused by lung volume issues. Low visibility
could also explain the very short duration of dives,
causing turtles to return frequently to the surface to
find their way using air-borne chemosensory cues
(Endres & Lohmann 2013, Endres et al. 2016).

Alternatively, the short dives observed in French
Guiana could be linked to foraging activity, as also
observed in Australian green turtles (Hazel et al.
2009). However, the high river outputs lead to low
levels of irradiance (Seminoff et al. 2002), probably
resulting in a lack of seagrass in this inter-nesting
habitat. If the turtles feed during the inter-nesting
period, such conditions could encourage them to feed
on other resources such as invertebrates, macro -
plankton or macroalgae (Bjorndal 1982). The forag-
ing ecology of Chelonia mydas varies greatly among
geographical regions (Buttemer & Dawson 1993, Hei-
thaus et al. 2002, Hatase et al. 2006, Amorocho &
Reina 2007, Burkholder et al. 2011, Blanco et al.
2013) and is particularly diverse in estuarine habi-
tats, where this species has been observed to con-
sume mainly animal matter, i.e. crustaceans, mol-
luscs, polychaetes and cnidarians (González Carman
et al. 2012, Santos et al. 2015). Jellyfish are also par-
ticularly abundant on the French Guiana continental
shelf (Fossette et al. 2009), providing an alternative
source of nutrition that may enable this green turtle
population to adapt to the local conditions of this
habitat. However, a visual investigation would be
required to confirm this assumption, as was previ-
ously carried out on green and loggerhead turtles in
the Mediterranean Sea (Hays et al. 2002b, Schofield
et al. 2006). Other devices such as jaw sensors could
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also be used in future studies to investigate if green
turtles feed during the inter-nesting season in French
Guiana (Fossette et al. 2008).

Gravid green turtles are known to commonly alter-
nate between different activities at sea during this
period, i.e. travelling, resting or foraging (Cheng et
al. 2013), and change between different dive shapes,
i.e. U (resting/foraging dives), V (exploratory dives)
or S (energy-saving swimming); see Hochscheid et
al. (1999) for further information. This was reflected
in our results, where 43% of the dives were
U-shaped and 47% were V-shaped. To confirm the
occurrence of these different activities, it would be
necessary to deploy acceleration data loggers, as
used by Cheng et al. (2013), and perform isotopic
analyses, oesophageal lavages and gut content
analysis to assess the types of prey consumed during
the inter-nesting season (Hatase et al. 2006, Amoro-
cho & Reina 2007).

Multiple extended surface intervals were identi-
fied by the tags, and may be associated with a resting
activity for prolonged periods (mean: 210 ± 288 min).
Unlike East Pacific green turtles, the daytime surfac-
ing behaviour of the females tracked in our study
suggests basking at the surface. Such behaviour can
be beneficial for thermoregulation (Sapsford & van
der Riet 1979, Hochscheid et al. 2010), avoidance of
aggressive males or potential predators (Swimmer
2006), delay of algal or fungal infestations and even
enhancement of immune response (Boyer 1965,
Swimmer 2006). Although some visual investigation
is needed, such extended periods of hauling out
could be associated with terrestrial basking on a per-
sistent sandbank located in the core area of the green
turtles (D. Chevallier unpubl. data). Two tags
recorded extremely long periods of hauling out
(>1300 min, ~22 h). These unusual basking events
were occasional, and could be caused by turtles
becoming trapped in the mud, the shrubby vegeta-
tion, or the decomposing wood accumulated on the
beach in piles that can be several meters high. This
phenomenon was observed for one female (#131355)
in 2014 (D. Chevallier unpubl. data). Indeed, the mul-
tiple mudbanks along the shores of French Guiana
and Suriname (Allison & Lee 2004, Anthony et al.
2010, 2015, Péron et al. 2013), are generated by the
sediment discharges from the Amazon River, and this
dynamic ecosystem leads to continuous erosion and
accretion processes. The basking behaviour de -
scribed in this study may be related to resting activity
and an uptake of solar radiation by individuals for
thermoregulation (Whittow & Balazs 1982, Hoch -
scheid et al. 2010, Van Houtan et al. 2015).

Conservation implications

Satellite tracking of the green turtle population
nesting in Suriname and French Guiana made it pos-
sible to locate and quantify the habitat used by this
species during the inter-nesting season. The survival
of this endangered species is at risk given its limited
dispersal close to its nesting beaches and the life-
threatening risk of illegal fishing along the Guiana
coast (Charuau 2002, DEAL Guyane 2013). An eval-
uation of their home range is essential to obtain a
reliable picture of core activity areas and identify
hotspots for the protection of this endangered species
(Scott et al. 2012, Schofield et al. 2013, Pendoley et al.
2014). The high energetic costs of reproduction and
nesting activities make the green turtle particularly
vulnerable during the breeding−nesting period,
especially in highly turbid waters such as those of the
Maroni River, where visibility is significantly re -
duced (Metz 2004). Although there is some inter-
annual variability, the limited core home ranges
found in this study (i.e. the areas where turtles con-
centrate their activity) may facilitate the implementa-
tion of adequate measures on a regional scale. Such
measures include recording the location of illegal
fisheries by the National Navy, the French National
Agency for Hunting and Wildlife (ONCFS) or the
Amana Nature Reserve, thus enabling us to focus on
conservation efforts in this critical habitat. Indeed,
the home range estimation derived from this study
closely overlaps with a major fishing ground unit
(Levrel 2012, Chevallier 2013). We therefore recom-
mend further study to evaluate the interactions
between gravid green turtles and fisheries, and thus
permit the delineation of a Marine Protected Area
that would cover the core area of this endangered
species. Given the nesting peak of this population
(i.e. from April to June) and the location of its habitat
(at the natural border between Suriname and French
Guiana), an open dialogue is crucial if we hope to
redefine international fishing practices and ensure
the conservation of this endangered species.
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