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Abstract:  

Stable carbon (δ13C) and nitrogen (δ15N) isotopes are frequently utilized to determine the origin 
of nutrients in the diets of wildlife. The consumption of organic matter throughout an animal’s 
life results in the deposition of isotopic signatures which can elucidate the prey and trophic level 
an animal feeds on. Adult green turtles (Chelonia mydas) are considered herbivorous animals 
that feed primarily on coastal seagrasses and macroalgae, but juveniles are opportunistic 
omnivores. Green turtles throughout their lives may feed on protein-rich items such as fish bait 
when the opportunity allows. Samples of skin were analyzed from 17 green turtles that had 
stranded between March 2020 to June 2022 from eight locations on the east coast of Hawaiʻi 
island. The turtles ranged in size from 36.1 - 78.5 cm curved carapace length (CCL) indicating 
size classes of juvenile to sub-adult. Mean δ13C ‰ was - 15.9 ± 1.55 SD and mean δ15N ‰ was 
8.63 ± 1.41 SD. These values for east Hawaiʻi Island turtles are similar to those in previous 
studies on green turtles found at Palmyra Atoll, Fiji, and the Eastern Pacific. These values are 
consistent with a marine plant diet. The conservation of marine plant populations in the Hawaiian 
Islands is essential for the management of healthy green turtle populations. 

Keywords - Feeding Ecology, Food Web, Diet Determination, Primary Consumer, Isotope 
Cycling 



1. Introduction 

Since the late 1970s, stable carbon and nitrogen isotopes have been utilized to determine the 
origin of nutrient resources in the diets of wildlife (DeNiro & Epstein 1978). The consumption of 
organic matter throughout an animal’s life results in the deposition of isotopic profiles within the 
tissue (Seminoff et al. 2009). Carbon and nitrogen isotopes are deposited in tissue over time and 
can give information on longer term diet than other methods i.e. gut analysis, mouth sampling, 
crop lavages, and direct observation (DeNiro & Epstein 1981). Samples from multiple specimens 
within a population provide data on consumption patterns at a specific trophic level (Seminoff et 
al. 2009). For sea turtles, stable isotopes have been used to study migratory paths and to map 
feeding locations during their life history (Ceriani et al. 2012, Vander Zanden et al. 2015, 
Haywood et al. 2020).  

The ratios of δ13C (ratio of 13C:12C) and δ15N (ratio of 15N:14N) are the two most frequently 
utilized isotopes to study dietary interactions (Post 2002). The δ13C is used to identify the 
primary producers because this form of carbon remains unchanged throughout a food chain (Post 
2002). However, nitrogen ratios are enriched in organisms higher in the food chain because 14N 
isotopes are excreted preferentially, thus leaving higher 15N levels within the organisms (DeNiro 
and Epstien 1989). 

Epidermis tissue (subsequently referred to as ‘skin’) samples provide a recent history of feeding 
preferences; however, there have been no studies that directly determine the isotopic 
replenishment rate or turnover for adult sea turtle skin. However, adult freshwater pond sliders 
(Trachemys scripta) which are commonly used as a surrogate for sea turtles exhibit an estimated 
isotopic turnover rate in their skin of approximately four to six months (Seminoff et al. 2007, 
Seminoff et al. 2012).  Based on tissue turnover rates in hatchlings and small juvenile sea turtles 
in captivity, isotope ratios are estimated to reflect habits at least four months prior to sampling 
(Reich et al. 2008, Seminoff et al. 2007, Reich et al. 2010, Ceriani et al. 2014) 

After leaving their natal beach, green turtles spend the first period of their life in the open ocean. 
During these three to five years, the juvenile green turtles are opportunistic omnivorous feeders 
and consume a varied diet of pelagic planktonic items  (Bolten 2003, Cardona et al. 2010). After 
their pelagic period, juvenile green turtles migrate to coastal environments where they transition 
to an herbivorous diet (Bjorndal 1980, Bjorndal and Bolten 1988, Bolten 2003, Balazs and 
Chaloupka 2004a, Reich et al. 2007, Arthur and Balasz 2008). According to previous stable 
isotope analysis studies (Godley et al. 1998, Hatase et al. 2006, Cardona et al. 2010) and gut 
content analysis (Limpus et al. 1994, Seminoff et al. 2002, Amorocho and Reina 2007), the exact 



time frame of diet change is variable among individuals when they make the switch. Turtles are 
thought to make this transition to nearshore environments when their straight carapace length 
(SCL) is around 35 cm in length (Zug et al. 2006). Adult green turtles migrate incredible 
distances between reproductive and feeding grounds (Hays and Hawkes 2018). Despite the 
distance, sea turtles are able to display high levels of site fidelity to specific feeding areas despite 
completing multiple migratory events within their life without issue (Shimada et al. 2020).   

The switch to a herbivorous diet remains permanent throughout the remaining life of green 
turtles; this diet is the foundation of the common perception of sea turtles grazing on coastal 
macroalgae and seagrasses (Bjorndal 1980). The ecological impact of green turtles as 
megaherbivores in seagrass meadows is well documented (Frazier 1971, Hirt et al. 1973, 
Bjorndal 1980, Mortimer 1981, Bjorndal & Bolten 2003, McClenachan et al. 2006, Heithaus et 
al. 2008,Vander Zander et al. 2013,  Heithaus et al. 2014). Seagrasses are the primary diet in 
populations of green turtles located on the coast of the Mediterranean (Margaritoulis & 
Teneketzis 2003, Cardona 2010), atolls in the Indian Ocean (Hasbún et al. 2000, Whiting et al. 
2007), coastal areas of Australia (Arthur et al. 2009), and the Caribbean (Mortimer 1981).  

In areas where seagrasses are sparse, turtles consume a diet either supplemented or primarily 
composed of macroalgae (Balazs 1976, Garnett et al. 1985, Limpus et. al 2005, Shimada et al. 
2014, Whiting et al. 2014). Mangrove leaves and propagules are frequently found in diet analysis 
of green turtles found in some locations (Limpus & Limpus 2000, Arthur et al. 2009). In 
Hawaiʻi, coastal terrestrial grass, terrestrial leaves, and other items are occasnionally found 
within sea turtle stomachs (Russell et al. 2011) Other reports suggest adults may 
opportunistically feed on on invertebrates when available such as sponges, molluscs, fish, or 
macrozooplankton (Mortimer 1981, Bjorndal 1997, Burkholder et al. 2011, Russell et al. 2011, 
Fukuoka et al. 2016, Piovano et al. 2020). Preference for certain plant food items has been 
demonstrated in populations found in Australia (Brand-Gardner et al. 1999), but, diet selection is 
thought to be driven by availability of items (Forbes 1996) 

In the main Hawaiian islands, green turtles primarily consume abundant red macroalgae 
(Rhodophyta) (Arthur & Balazs 2008). Green (Chlorophyta) and brown (Phaeophyta) 
macroalgae are also consumed by turtles when available (McDermid et al. 2007). Two 
seagrasses, Halophila decipiens and H. hawaiiana have also been reported to make up a 
substantial portion of turtle’s diet, but only in areas that provide habitat for seagrass growth, e.g. 
near Oʻahu (Russell et al. 2003). In a study conducted with turtles taken from Pālā‘au, Molokaʻi, 
the red algaes Acanthrophora spicifera, Amansia glomerata, Gracilaria salicornia, Hypnea 



cervicornis, Hypnea musciformis and Spyridia filamentosa were commonly occurring species 
found to be consumed by turtles (Balazs et al. 1987, Russell & Balazs 2009).  

The present study used stable isotope analysis of skin samples to investigate the diets of green 
turtles from the east coast of Hawaiʻi Island. The hypothesis was that the δ13C and δ15N values 
indicate a macroalgal diet and that the isotope ratios would not differ significantly from values 
reported from other green turtle populations.  

2. Methods 

 Seventeen samples of Chelonia mydas skin were obtained from turtles that stranded 
between March 2020 and June 2022, from eight separate locations on the east coast of Hawaiʻi 
Island (Figure 1). Stranding reports contained data on date, location, curved carapace length 
(CCL), current condition, and tag number if present. CCL was utilized as a proxy for age; 
individuals with a CCL less than 70 cm were considered juveniles, individuals with a CCL of 70 
to 86 cm were grouped as sub-adults, and individuals with a CCL of over 87 cm were recognized 
as adults (Balazs 1980).  

 
Figure 1: Stranding locations of green turtles (Chelonia mydas) on the east coast of Hawai‘i 
Island.  

The deceased turtles were taken to the University of Hawaiʻi at Hilo and frozen for 
preservation until transport to National Marine Fisheries Service on Oʻahu on June 23, 2022 
where necropsies were conducted on August 11, 2022. Skin samples were removed from the hind 
flippers close to the tail with a scalpel, and frozen in individual, labeled Whirlpak bags, and then 



transported back to the Marine Science Department at the University of Hawaiʻi at Hilo on 
August 18, 2022.   

Skin samples were rinsed with deionized water, before being weighed on a Scout Pro 
Model SP 402 for wet weights. Samples were then diced with a scalpel and dried in aluminum 
weighing dishes at approximately 60°C for a minimum of 24 hours in a FisherSci model oven.  
 The skin samples were dried to a constant weight and dry weights were recorded. 
Samples were ground with a mortar and pestle by hand into a fine powder. Some samples were 
pulverized in a Wig-L-Bug Grinding Mill to improve grinding. Powdered samples were returned 
to weigh boats in the oven temporarily until they were loaded into sterilized tin capsules. 
Between processing steps, samples were kept stored in the oven to prevent rehydration. 
(Seminoff et al. 2006) 

Prepared samples in tin capsules were analyzed by the Analytical Laboratory at the 
University of Hawaiʻi at Hilo. Nitrogen and carbon were assayed using a Thermo Delta V IRMS 
machine.  Some samples were randomly picked and processed as duplicates to test for 
consistency of ratio values, but were not used during data analysis.  

The abundance of stable isotopes were reported as δX with X representing either 13C or 
15N. To represent the ratio of isotopes, the Rsample and Rstandard concept is used with respect to the 
heavy and light isotopes (13C/12C and 15N/14N). δX values past tense recorded as per mil (parts 
per thousand difference from international standard) and were calculated using the formula:  

δX = 1000 x ([(Rsample / Rstandard] - 1) 

Results of isotope ratios were compared to the standards set forth by the United States 
Geological Survey (USGS). The Rstandard for 13C was Vienna PeeDee Belemnite (VPDB) [40 
(δ13C  vs VPDB = -26.4) & USGS 41 δ13C vs. VPDB = 37.6)], and  Rstandard for 15N was 
normalized to atmospheric nitrogen [USGS 40 (δ15N vs. Air = -4.5) & USGS 41 (δ15N vs Air = 
47.6)]. Both Rstandards were accurate to 0.2‰. Two laboratory standards were run alongside the 
samples to verify the accuracy and precision of the spectrometer.  

Results are reported as mean ± standard deviation (SD). Statistical analysis was 
performed using RStudio program version 1.4.1106 and GoogleSheets. 

3. Results 

Skin samples (n = 17) from turtles that were found stranded at eight different locations on the 
east coast of Hawaiʻi Island (Table 1) were analyzed. The wet weight of samples ranged from 
0.07 g to 0.31 g, after drying samples weighed from less than one gram to 0.14 g.  The curved 
carapace lengths (CCL) of 16 turtles ranged from 36.1 - 75 cm in length (mean ± SD = 57 ± 15 
cm) (Figure 2). One turtle (H391/H392 (MIS)) was recorded with a straight plastron length. This 



choice in measurement method lacks a conversion method to curved carapace length (CCL), and 
has been omitted from size-related data as a result. Based on CCL measurements, juvenile turtles 
comprised of 65% (n = 11) used in this study of the stranded individuals, and the remaining 35% 
(n = 6) were classified as sub-adults (Table 2).  

 
Table 1: Stranded green turtles (Chelonia mydas) found along the east coast of Hawai‘i island 
between 2020 and 2022 categorized by the locations stranding occurred at. Curved carapce 
length (CCL) is given in centimeters.  



 
Figure 2: The curved carapace length (CCL) of stranded green turtles (Chelonia mydas) found 
along the east coast of Hawai‘i island between 2020 and 2022 that were utilized in this study as a 
proxy for age. 

 

Table 2: Mean curved carapace length (CCL) measurements  (± SD) and mean skin tissue 
isotopic signatures  (± SD) from age classes of stranded green turtles (Chelonia mydas) found 
along the east coast of Hawai‘i island between 2020 and 2022 Age classes were defined as 
juvenile (> 65 cm CCL) and sub-adult (65 - 83 cm CCL).  

The average value of  δ13C found within the samples was -15.9 (± 1.55), with values 
ranging from -14.3 to -18.0  (Figure 3). The average value of δ15N was 8.6 (± 1.41), with values 
ranging from 6.2 to 11.9 (Figure 4).  



 

Figure 3: The composition of δ13C  (± SD) in skin tissue samples from stranded green turtles 
(Chelonia mydas) found along the east coast of Hawai‘i island between 2020 and 2022 

 
Figure 4: The composition of δ15N (± SD) in skin tissue samples from stranded green turtles 
(Chelonia mydas) found along the east coast of Hawai‘i island between 2020 and 2022 

 Level recorded of  δ15N and δ13C varied based on individuals. The turtle with the highest 
value of δ15N was Turtle H371 (-12) (Figure 7), while Turtle H383 had the lowest value (-18) 



(Figure 8). The turtle with the lowest value of δ13C was Turtle H354 (6.2) (Figure 6) while Turtle 
H386 (MIS) had the highest value (11.9) recorded (Figure 8). 

 
Figure 5: The composition of δ15N and δ13C in skin tissue samples taken from stranded turtles 
H339, H341, H343, and H346. 

 



Figure 6: The composition of δ15N and δ13C in skin tissue samples taken from stranded turtles 
H354, H359, H360, and H361. 

 
Figure 7: The composition of δ15N and δ13C in skin tissue samples taken from stranded turtles 
H371, H374 (N799), H375, H380.  

 



Figure 8: The composition of δ15N and δ13C in skin tissue samples taken from stranded turtles 
H383, H386 (MIS), H387, H-391/392 (MIS), and H400.  

4. Discussion 
  
The results of isotope levels are consistent with prior assumptions that after recruiting 

from the pelagic environment, sea turtles in Hawaiʻi primarily consume macroalgae. The lower 
nitrogen values that are present in subadults, and enriched in juveniles can be explained by this 
transition from animal to plant items in their diet. The existence of depleted values in juveniles or 
enriched subadults can be explained by either these individuals still consuming an omnivorous 
diet with a late dietary switch or a more recent transition to the neritic environment. East Hawaiʻi 
turtles may also supplement their diets with higher trophic level dietary items when opportunities 
are present. 

The juvenile turtles presented with the most depleted carbon values. This can be 
indicative of a recent dietary shift from pelagic planktonic items to a coastal marine plant diet. 
However, the juvenile signatures were not significantly different from the sub-adult turtles which 
were slightly more enriched with carbon. Both the juvenile and subadult carbon values are 
indicative of a macroalgae diet. According to Arthur and Balazs (2008), macroalgae is a prey 
source that is considered to be further depleted in δ13C when compared to seagrasses.  

The subadult turtles possessed an overall depleted nitrogen value than the juvenile turtles. 
This suggests that the subadults were feeding on a higher trophic level than the juveniles prior to 
stranding (Arthur et al. 2009) The proteins in prey items are the main source for 15N, while 13C is 
able to be extracted from proteins, lipids, and carbohydrates. As a result, the turnover rate of 
epidermis layers, the dietary quantity of proteins in the individual turtle's diet, and turnover of 
protein consumption can affect the isotopic accumulation rate more frequently for nitrogen than 
carbon (Robbins et al. 2005, Robbins et al. 2010). In turtles, stable carbon ratios are reported to 
be enriched at levels approximately 0 - 1‰ higher than their prey (Seminoff et al. 2006) while 
nitrogen may be enriched at levels closer to 0.22 - 2.92‰ than prey (Seminoff et al. 2006).  

As no prey samples were collected during the time frame of strandings for the turtles 
utilized in this study, no direct comparison of values could be made to showcase the variability in 
the diet. However, other studies conducted are able to indicate the values of carbon and nitrogen 
isotopes found with other populations which can be indicative of what can be expected from 
turtles who are consuming a diet of other items (Arthur et al. 2009, Kelly 2012) (Table 3).  

Although isotopic signatures can not be directly compared across regions of feeding 
because of variables of baseline isotopic values by location or prey type, inferences of dietary 
preference indications can be made from literature analysis of generalized results of species’ 
isotope levels. Showed turtles taken from Australia (Arthur et al. 2009) and Palmyra Atoll (Kelly 
2012) all possessed enriched carbon values when compared to the individuals from east Hawaiʻi 



turtles. Hawaiʻi turtles consume a diet of macroalgae, rather than seagrasses unlike Australian 
and Palmyra turtles (Arthur et al. 2009, Kelly 2012). Differences can be attributed to 
environmental conditions differing isotopic signatures within regions (Pajuelo et al. 2012), 
location of sampling, and preferential consumption differences.  

Table 3: Mean isotopic values of prey items taken from the literature (Appendix A) to compare 
with east Hawaiʻi turtles values. Prey groups include Macroalgae (green algae (Chlorophyta), 
brown algae (Phaeophyta), red algae (Rhodophyta)), Seagrasses, Mangroves, Zooplankton, and 
Invertebrates. Mean ± SD skin isotopes for sampled green turtles within the study from east 
Hawaiʻi also included for visual comparison. 

No significant differences were found in nitrogen and carbon values among species. 
Small sample sizes from locations or different prey availability could explain the lack of 
statistical significance with isotope values. Further research can be conducted to explore the 
values of nitrogen and carbon isotopes within local Hawaiʻi macroalgal populations.  

Hawaiʻi Island turtles may face physiological factors affecting the processing of proteins 
or other molecules into tissues which would affect the levels of isotopes present within tissue 
(Seminoff et. al 2006). Differences in individuals’ growth, age, and dietary preferences and 
compositions may also exist between the populations referenced in the study (Seminoff et al. 
2006, Arthur et al. 2008, Reich et al. 2008, Kelly 2012) which would affect the isotope values.  

Food Source Option 
(Prey)

    δ13C (‰) 
Mean                 ±SD

 δ15N (‰) 
Mean                 ±SD

Values taken from Literature

      Macroalgae 

Chlorophyta 
Phaeophyta 
Rhodophyta 

-15.0               7.05 

-15.97             6.54 
-11.52             4.89 
-17.72             5.34

6.55              2.28 

 6.22               2.10 
7.14              3.00 
6.84              1.18

      Invertebrates   -11.69             5.21 9.52              0.29

East Hawaiʻi turtles

      Green Turtle (n = 17)   -15.9              1.55 8.6              1.41



Prey groups in literature frequently overlap and are not considered to be significantly 
different in many cases which limits accuracy. Incorporation of more species or groups for 
comparison may be beneficial for future studies.  

Understanding the importance of marine plants in the diet of green turtles is essential in 
managing turtles as an endangered species. Sea turtles play an important position in the coastal 
marine ecosystem as a herbivore, and it is critical to maintain suitable habitats for their feeding 
to occur. The body condition of turtles living within a region can also provide researchers with an 
idea of the overall health of an ecosystem, by judging the success of a primary consumer 
(Wabnitz et al. 2010). To regulate the threat of human activities to ecosystems, potential 
solutions include creating more Marine Protected Areas (MPAs) in critical habitat locations and 
implementing local beach restoration efforts. Proper resource management is needed to maintain 
the protection of these vulnerable areas to prevent habitat loss.  
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Prey Group Source Species Sampling Location
δ13C 
(‰)

± 
SD

δ15

N 
(‰
)

± 
SD

Chlorophyta
-15.9

7 6.54
6.2
2 2.10

Avrainaville
a Kelly 2012 Palmyra Atoll

-19.9
2

8.0
3

Kelly 2012 Palmyra Atoll
-14.0

0
6.0
4

Bryopsis Kelly 2012 Palmyra Atoll
-16.3

4
6.7
4

Kelly 2012 Palmyra Atoll
-17.3

4
7.3
8

Caulerpa Kelly 2012 Palmyra Atoll
-12.2

7
5.3
0

Kelly 2012 Palmyra Atoll
-11.2

9
6.1
6

Kelly 2012 Palmyra Atoll
-13.9

0
5.3
8

Kelly 2012 Palmyra Atoll
-15.4

0
7.0
6

Kelly 2012 Palmyra Atoll
-14.1

7
5.3
1

Hyndes & 
Lavery 2005 

C. 
gemminata

nearshore waters,  
SW Australia -13.4 5.5

Hyndes & 
Lavery 2005 C.  flexilis  

nearshore waters,  
SW Australia -12.6



Raven et al. 
2002 C. cactoides 

Coobowie Bay,  
SA, Australia

-21.3
5

Raven et al. 
2002 C.  flexilis  

Coobowie Bay,  
SA, Australia

-32.9
8

Raven et al. 
2002

C.  
microphysa 

W Flower Garden,  
Gulf of Mexico 

(GoM)
-22.7

9

Raven et al. 
2002

C.  
microphysa 

W Flower Garden,  
GoM -20.3

Raven et al. 
2002

C. 
microphysa

Sonnier, 
GoM -19.6

Raven et al. 
2002

C.  
microphysa Stetson, GoM 

-19.9
4

Raven et al. 
2002

C.  
microphysa Stetson, GoM

-20.9
7

Raven et al. 
2002

C. 
microphysa

E Flower Garden, 
GoM

-19.9
9

Raven et al. 
2002 C. obscura

Stragglers, 
WA, Australia

-20.3
3

Raven et al. 
2002 C. obscura

Carnac Island, WA, 
Australia

-30.1
8

Prey 
Group Source Species Sampling Location

δ13C 
(‰)

± 
SD

δ15

N 
(‰
)

± 
SD

Raven et al. 2002 C. obscura
Carnac Island, WA, 

Australia
-29.5

9

Raven et al. 2002 C. obscura
Hamelin Bay, WA, 

Australia 
-31.3

3

Raven et al. 2002 C. obscura
Mewstone, WA, 

Australia
-28.9

9



Raven et al. 2002 C. obscura
Mewstone, WA, 

Australia
-28.5

9

Raven et al. 2002 C. obscura
Stragglers, WA, 

Australia
-30.1

2

Raven et al. 2002 C. obscura
Stragglers, WA, 

Australia
-28.3

9

Raven et al. 2002 C. obscura
The Lumps,WA, 

Australia
-25.9

2

Raven et al. 2002 C. obscura
The Lumps, WA, 

Australia
-31.3

8

Cladopho
ra Kelly 2012 Palmyra Atoll -9.12

8.2
0

Kelly 2012 Palmyra Atoll -9.57
7.4
4

Kelly 2012 Nursery
-15.1

4
6.6
4

Dailer et al. 2010 C. sericea NW Maui 0.2

Vizzini & 
Mazzola 2003 

Cladophora 
sp.

Lake of Sabaudia, 
Italy -15.9 5.9

Lepoint et al. 
2000 C. proliphera

Gulf of Calvi, 
Corsica -17.5 4

McClelland et al. 
1998 C. vagabunda

Pond/River, Mass., 
USA -15.2 5.4

Maberly et al. 
1992 C. sericea

Tentsmuir Drift,  
East Coast Scotland

-19.3
5

Maberly et al. 
1992 C. rupestris

Mid-Shore, 
East Coast Scotland

-16.6
6

Maberly et al. 
1992 C. rupestris

Sheltered Rock 
Pool, ,  

East Coast Scotland
-13.3

3



Raven et al. 2002 C. albida Filey, England
-10.8

3

Raven et al. 2002
C. 

hutchinsonia Filey, England
-12.1

5

Raven et al. 2002 C. rupestris Fifeness, England
-14.0

2

Raven et al. 2002 C. rupestris Filey, England
-18.0

9

Raven et al. 2002 C. rupestris East Sands, Scotland -15

Prey 
Group Source Species Sampling Location

δ13C 
(‰)

± 
SD

δ15

N 
(‰
)

± 
SD

Raven et al. 2002 C. rupestris East Sands, Scotland
-15.3

7

Raven et al. 2002 C. rupestris Hemsdale, Scotland 
-14.3

3

Raven et al. 2002
Cladophora 

sp. Gran Canaria
-16.1

2

Codium Kelly 2012 T.H. -9.82
7.4
7

Kang et al. 2008 C. arabicum
Samchoek Coast, 

Korea -10.3 3.8

Lepoint et al. 
2000 C. bursa

Gulf of Calvi, 
Corsica -10.3 3.1

Hydes & Lavery 
2005 C. duthaeie

SW Australia 
(Nearshore) -15.5 4.8

Maberly et al. 
1992 C. fragile

Rockpool,  
East Coast Scotland 

-15.0
1



Maberly et al. 
1992 C. fragile

Sheltered Rockpool,  
East Coast Scotland 

-14.0
8

Maberly et al. 
1992 C. fragile

Sheltered Rockpool,  
East Coast Scotland

-10.2
3

Maberly et al. 
1992 C. fragile

Fife Ness, 
East Coast Scotland

-15.3
8

Raven et al. 2002
C. 

convulutum

Brighton Beach / 
Papatowai Beach,  

New Zealand
-14.5

4

Raven et al. 2002 C. fragile California, USA -11.7

Raven et al. 2002 C. fragile California, USA
-11.1

5

Raven et al. 2002 C. fragile

Brighton Beach / 
Papatowai Beach,  

New Zealand
-12.0

4

Raven et al. 2002 C. fragile

Brighton Beach / 
Papatowai Beach,  

New Zealand
-15.4

6

Raven et al. 2002 C. fragile Helmsdale, Scotland
-12.8

7

Raven et al. 2002 C. fragile
St. Andrews, 

Scotland
-13.2

6

Raven et al. 2002 C. hubsii Catalina Island, CA -8.17

Raven et al. 2002 Codium sp. Fifeness, Scotland
-10.8

6

Raven et al. 2002 Codium sp. Gran Canaria -9.86

Raven et al. 2002 Codium sp. Gran Canaria
-14.4

7

Prey Group Source Species
Sampling 
Location

δ13C 
(‰)

± 
SD

δ15N 
(‰)

± 
SD



Raven et al. 
2002 Codium sp.

Hampton Bay, 
Long Island, NY

-15.7
6

Wang & Yeh 
2003

C. 
mamillosum

sublittoral, North 
Taiwan -14.2

Dictyosphae
ria Kelly 2012 Palmyra Atoll

Kelly 2012 Palmyra Atoll

Raven et al. 
2002 D. sericea

Rottnest Island, 
WA, Australia -6.33

Halimeda Kelly 2012 Palmyra Atoll
-11.2

5 6.66

Kelly 2012 Palmyra Atoll -4.86
10.0

2

Kelly 2012 Palmyra Atoll -7.86 8.05

Kelly 2012 P.S. -4.76 8.60

Lepoint et al. 
2000 H. tuna

Gulf of Calvi, 
Corsica -19.3 1.3

Raven et al. 
2002 Halimeda sp. Gran Canaria

-11.3
3

Raven et al. 
2002 Halimeda sp. Singapore -6.83

Wang & Yeh 
2003

H. 
macroloba

Tidal Pool,  
South Taiwan -21.2

Wang & Yeh 
2003 H. opuntia

Tidal Pool,  
South Taiwan -19.7

Unknown 
sp. Kelly 2012 Palmyra Atoll

-10.7
5 7.02



Valonia Kelly 2012 Palmyra Atoll
-11.8

2 8.06

Kelly 2012 Palmyra Atoll
-16.8

4 8.82

Raven et al. 
2002 V. clavata Gran Canaria

-14.8
3

Phaeophyta
-11.5

2 4.89 7.14
3.0
0

Acathophora Kelly 2012 Palmyra Atoll
12.5

0 8.58

Lin & Fong 
2008 A. spicifera

Nearshore reef, 
Opunohu Bay, 

Moorea 6

Wang & Yeh A. spicifera
Upper-tidal pool, 

East Taiwan -13.9

Dotyophycu
s Kelly 2012 Palmyra Atoll -7.96 8.86

Prey 
Group Source Species Sampling Location

δ13C 
(‰) ± SD

δ15N 
(‰)

± 
S
D

Dictyota
Lepoint et al. 

2000 Dictyota spp.
Gulf of Calvi, 

Corsica -17.4 3.6

Umezawa et al. 
2002 Dictyota spp.

Offshore Reef, 
Ishigaki Island, Japan 2

Umezawa et al. 
2002 Dictyota spp.

Nearshore Reef, 
Ishigaki Island, Japan 8

Newell et al. 
1995 D. dicotoma Peninsular Malaysia

-19.9
4

10.3
6



Raven et al. 
2002

D. 
cervicornus Stetson, GOM

-15.0
6

Raven et al. 
2002 D. dichotoma N of Oban, Scotland

-18.4
3

Raven et al. 
2002 D. dichotoma N of Oban, Scotland

-19.6
8

Raven et al. 
2002 D. dichotoma Filey, England

-13.0
6

Raven et al. 
2002 D. dichotoma Finnoy, Norway

-12.0
6

Raven et al. 
2002

D. 
menstrualis

W Flower Gardens, 
GOM

-11.0
6

Raven et al. 
2002

D. 
menstrualis Stetson, GOM

-10.0
6

Raven et al. 
2002

D. 
menstrualis Stetson, GOM -9.06

Raven et al. 
2002

D. 
menstrualis Stetson, GOM -8.06

Raven et al. 
2002 D. pfaffi Stetson, GOM -7.06

Raven et al. 
2002 D. pfaffi

E Flower Garden, 
GOM -6.06

Raven et al. 
2002 D. pulchella Stetson, GOM -5.06

Raven et al. 
2002

D. 
menstrualis

E Flower Garden, 
GOM -4.06

Dotyophyc
us Kelly 2012 Palmyra Atoll -7.96 8.66

Turbinaria Kelly 2012 Palmyra Atoll -8.46 9.70



Rhodophyt
a

-17.7
2 5.34 6.84

1.
18

Asparagos
p-sis Kelly 2012 Palmyra Atoll

-17.0
9 7.96

Raven et al. 
2002 A. armata

Stricland Bay, WA, 
Austrailia

-29.7
1

Raven et al. 
2002 A. armata

Stricland Bay, WA, 
Austrailia

-29.5
5

Raven et al. 
2002

A. 
taxixformis Catalina Island, CA -28

Prey 
Group Source Species

Sampling 
Location

δ13C 
(‰)

± 
SD

δ15

N 
(‰
)

± 
SD

Ceramium Kelly 2012 Palmyra Atoll
-15.6

7

Kelly 2012 Palmyra Atoll
-14.5

7

Kelly 2012 Palmyra Atoll -8.91

Kelly 2012 Palmyra Atoll -8.68

Maberly et al. 
1992 C. rubrum

Rockpool,  
East Coast 
Scotland

-13.0
9

7.4
7

Maberly et al. 
1992 C. rubrum

Tentsmuir drift,  
East Coast 
Scotland

-19.5
6 3.8

Raven et al. 
2002 C. rubrum Bergen, Norway

-18.2
9 3.1



Raven et al. 
2002

C. shuttleworth- 
ianum

Bergen Store 
Kalsoy, Norway

-19.2
6 4.8

Raven et al. 
2002

C. shuttleworth- 
ianum

Flamborough 
England

-19.1
3

Galaxaura Kelly 2012 Palmyra Atoll
-11.3

4
7.7
7

Wang & Yeh 
2003 G. marginata

Tidal pool, East 
Taiwan -16.2

Kelly 2012 Palmyra Atoll
-10.5

8
7.8
0

Kelly 2012 Palmyra Atoll
-16.4

0
6.4
3

Raven et. al 
2002 Gelidiopsis sp. Stetson, GOM

-19.6
8

Kelly 2012 Palmyra Atoll
-15.2

2
6.3
4

Kelly 2012 Palmyra Atoll -17.4
5.6
3

Dailer et al. 
2010 H. musciformis

Kahana, West 
Maui 6.6

Dailer et al. 
2010 H. musciformis South Maui 6.8

Hyndes & 
Lavery 2005 Hypnea sp A SW Australia -19.8 6.8

Hyndes & 
Lavery 2005 Hypnea sp B SW Australia -19.6 5.4



Raven et al. 
2002 H. volubilis Stetson, GOM

-19.4
2

Raven et al. 
2002 H. volubilis Stetson, GOM

-21.0
9

Raven et. al 
2002 H. volubilis

E Flower Garden, 
GOM

-18.5
6

Raven et al. 
2002 Hypnea sp. Gran Canaria

-21.7
5

Prey Group Source Species
Sampling 
Location

δ13C 
(‰)

± 
SD

δ15

N 
(‰
)

± 
SD

Wang & Yeh 
2003 H. spinella

Sublittoral,  
North Taiwan -19.8

Wang & Yeh 
2003 H. japonica

Sublittoral,  
North Taiwan -21.2

Jania Kelly 2012 Palmyra Atoll -7.49
7.5
3

Raven et al. 
2002 J. micrathandia

Rottnest Island, 
WA, Australia

-22.5
5

Raven et. al 
2002 J. rubeus

S Coast of Devon, 
UK

-12.5
7

Spirulina Kelly 2012 Palmyra Atoll

Spyridia Kelly 2012 T.H.

Gelidium
Kang et al. 

2008 G. amansii
Samchoek Coast, 

Korea -16.8 4.7



Raven et. al 
2002 G. latifolium

Bergen Store 
Kalsoy, Norway

-15.8
6

Invertebrate
-11.6

9 5.22
9.5
2 0.29

Black Sponge Kelly 2012 Gelidiopsis sp. Palmyra Atoll -4.29
9.3
9

Kelly 2012 Palmyra Atoll
-15.8

9
9.1
9

Clay Colored 
Sponge Kelly 2012 Palmyra Atoll -8.96

9.7
2

Orange 
Sponge Kelly 2012 Palmyra Atoll

-16.5
6

9.2
3

Purple 
Tunicates Kelly 2012 Palmyra Atoll -8.90

9.8
7

Red 
Tunicates/ 
Sponge Kelly 2012 Palmyra Atoll

-15.5
5

9.7
4
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