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ABSTRACT
Deriving robust historical population trends for long-lived species subject to human
exploitation is challenging in scenarios where long-term scientific data are scarce or
unavailable, as often occurs for species affected by small-scale fisheries and
subsistence hunting. The importance of Local Ecological Knowledge (LEK) in
data-poor scenarios is increasingly recognized in conservation, both in terms of
uncovering historical trends and for engaging community stewardship of historic
information. Building on previous work in marine historical ecology and local
ecological knowledge, we propose a mixed socio-ecological framework to reliably
document and quantify LEK to reconstruct historical population trends. Our method
can be adapted by interdisciplinary teams to study various long-lived taxa with a
history of human use. We demonstrate the validity of our approach by reconstructing
long-term abundance data for the heavily-exploited East Pacific green turtle
(Chelonia mydas) in Baja California, Mexico, which was driven to near extinction by
a largely unregulated fishery from the early 1950s to the 1980s. No scientific baseline
abundance data were available for this time-frame because recent biological
surveys started in 1995 after all green turtle fisheries in the area were closed. To fill
this data gap, we documented LEK among local fishers using ethnographic methods
and obtained verified, qualitative data to understand the socio-environmental
complexity of the green turtle fishery. We then established an iterative framework to
synthesize and quantify LEK using generalized linear models (GLMs) and nonlinear
regression (NLR) to generate a standardized, LEK-derived catch-per-unit-effort
(CPUE) time-series. CPUE is an index of abundance that is compatible with
contemporary scientific survey data. We confirmed the accuracy of LEK-derived
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CPUE estimates via comparisons with fisheries statistics available for 1962–1982.
We then modeled LEK-derived abundance trends prior to 1995 using NLR.
Our model established baseline abundance and described historical declines,
revealing that the most critical (exponential) decline occurred between 1960 and
1980. This robust integration of LEK data with ecological science is of critical value
for conservation and management, as it contributes to a holistic view of a species’
historic and contemporary conservation status.

Subjects Ecology, Marine Biology
Keywords Interdisciplinary studies, Ecological modelling, Local Ecological Knowledge (LEK),
Sea turtles, Ethnobiology, Conservation, Long-lived fauna, Data-poor fisheries

INTRODUCTION
Assessment of the current population status of long-lived species benefits from a
firm understanding of historical baseline abundances (Pauly, 1995). For example, the
Internation Union for Conservation of Nature (IUCN) Red List criteria requires
abundance trends over three generations. For long-lived species, tracking three generations
may necessitate >100 years of data (Seminoff & Shanker, 2008; IUCN, 2019). However,
deriving robust historical population trends is challenging when scientific monitoring data
are scarce or unavailable (Pauly, 1995; Sáenz-Arroyo et al., 2005; Beaudreau & Levin,
2014). This is further aggravated in data-poor contexts, when a species is impacted by
illegal, unreported, or unregulated exploitation. Common data-poor contexts include
small-scale fisheries and subsistence hunting (Moller et al., 2004; Duffy et al., 2016;
Selgrath, Gergel & Vincent, 2018). This challenging situation has led to increased
interest in Local Ecological Knowledge (LEK), including traditional knowledge (TK)
of indigenous peoples, to better understand long-term environmental change and
human-environment interactions (Johannes, 1981; De Castro et al., 2014; Bao & Drew,
2017; Lee et al., 2018; Barrios-Garrido et al., 2018).

LEK can be defined as place-based empirical knowledge, held by a specific group of
people about their surrounding environments and biota (Bélisle et al., 2018). LEK does not
require that knowledge-holders be indigenous, nor embedded in a broader shared culture,
and thus can be applied to people and communities with relatively short histories of
interactions with a specific environment (cf. Narchi et al., 2014). LEK data have been
used in combination with official records and historical documentation to reconstruct
long-term abundance trends of exploited marine species in multiple contexts (Jackson
et al., 2001; Sáenz-Arroyo et al., 2005; Beaudreau & Levin, 2014; Lee et al., 2018). LEK
also provides baseline data that fill knowledge gaps which cannot be addressed through
natural sciences alone (Mukherjee et al., 2018; Mason et al., 2019). Examples include
knowledge of ecological change over broad time-scales (Sáenz-Arroyo et al., 2005;
Lee et al., 2018), traditional and local resource use (Johannes, 1981; Barrios-Garrido et al.,
2018), and conceptual frameworks for ecological modeling (Ainsworth, 2011; Bélisle et al.,
2018). However, clear methodological guidelines, based on robust methods from social
and natural sciences, are needed to reliably integrate LEK with scientific ecological data in

Early-Capistrán et al. (2020), PeerJ, DOI 10.7717/peerj.9494 2/34

http://dx.doi.org/10.7717/peerj.9494
https://peerj.com/


conservation science (Mukherjee et al., 2018; Young et al., 2018; Moon et al., 2019).
This includes developing approaches to collate and validate information from diverse
knowledge sources, and forming interdisciplinary teams with expertise appropriate for the
methods being used (St. John et al., 2014; Sutherland et al., 2018).

We present a case study of the East Pacific green turtle (Chelonia mydas, hereafter green
turtle) in Bahía de los Ángeles (BLA), Baja California, Mexico, to demonstrate a novel
framework that can be adapted to long-lived, exploited taxa to evaluate abundance trends
in data-poor scenarios. We used ethnography to document LEK, and developed an ad hoc
epistemological approach to synthesize and quantify LEK data using generalized linear
models (GLMs) and nonlinear least squares regression (NLR) to reconstruct long-term
C. mydas abundance. Our model established baseline abundance, described historical
declines, and evaluated how human impacts contributed to current species population
status.

The complexity of the green turtle’s life history makes it particularly challenging to
evaluate its conservation status. Generation times are up to 50 years, they are highly
migratory, and life stages occupy multiple habitats separated by hundreds or thousands of
kilometers, often in different countries. Globally, abundance data are skewed towards
nesting beaches, which only quantify nesting females (Seminoff & Shanker, 2008; Godley
et al., 2010). For the Eastern Pacific population, nesting data have been collected since
1980 at the primary nesting beach in Colola, Michoacán, Mexico (~1,500 km from BLA)
(Delgado-Trejo, 2016). However, there are substantial knowledge gaps for foraging
habitats, which are critical for several reasons. Foraging habitats include pre-reproductive
life stages—which are the most abundant life stages in the population—along with
adults of both sexes. Furthermore, foraging habitats are where green turtles spend the
majority of their life: juveniles may spend 20 years or more in foraging grounds until
reaching maturity, and adults reside at feeding grounds during non-breeding periods
(Seminoff, Resendiz & Nichols, 2002; Seminoff & Shanker, 2008; Senko et al., 2019).
Thus, expanding data on foraging habitats is of utmost importance for a holistic
understanding of population status (Chaloupka et al., 2008; Mazaris et al., 2017;
Wildermann et al., 2018).

Green turtles are listed as Endangered by the IUCN and Mexican law as a result of
population collapse due to a largely unregulated fishery between the 1950s and 1980s
(Diario Oficial de la Federación, 1990; IUCN, 2019; SEMARNAT, 2010). Populations in the
Eastern Pacific have increased since the early 2000s thanks to decades of nesting beach
protection at Colola starting in the late 1970s, coupled with expanded efforts to limit
egg harvests, direct captures, and poaching throughout the species’ range in Mexico
(Delgado-Trejo, 2016; Seminoff et al., 2015). These efforts were fortified by the 1990 ban on
all sea turtle use in Mexico, which established a legal framework to prevent harvests
(Diario Oficial de la Federación, 1990; SEMARNAT, 2010). However, abundance data and
long-term trends prior to population collapse are needed to contextualize current
population levels (Early-Capistrán et al., 2018; Seminoff et al., 2008).

Starting with an overarching research question (e.g., What was the baseline green turtle
abundance, and how did it change over time, before scientific monitoring?), we carried out
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background research with natural and social science perspectives to gain a broad
understanding of the research topic (Crandall et al., 2018). We then used an iterative
approach to document LEK through ethnography, and synthesized LEK-data for
integration with ecological modeling to provide a consistent long-term time-series of green
turtle abundance data that can inform conservation.

METHODS
We present a flexible approach for generating green turtle abundance estimates from
LEK that can be modified for long-lived species with a history of human use.
Our approach consists of four phases: (1) background research and experimental design;
(2) an iterative process of LEK documentation, synthesis, and quantification; (3) database
standardization and validation; and (4) statistical analysis and modeling of the
standardized database (Fig. 1). Interdisciplinary teams can ensure that quality and
reliability standards are met across fields (Tengö et al., 2014; St. John et al., 2014; Sutherland
et al., 2018). Detailed accounts of methods and tools are available in Supporting
Information (henceforth, SI) (Article S1).

Phase 1: background research and experimental design

Study site
To demonstrate our methods, we used the case of the green turtle in Bahía de los Ángeles
(BLA), Baja California, Mexico (28�57’6.90"N, 113�33’44.76"W), an index foraging area
in the Gulf of California (Seminoff et al., 2003, 2008). We define an index foraging area
as a site that (i) has aggregations of turtles in the marine environment that represent a
significant proportion of the regional population, and (ii) has been monitored
systematically and constantly over a prolonged period of time (>10 years). In-water
scientific monitoring in this foraging area began in 1995, after population collapse
(Seminoff et al., 2003, 2008). Contemporary scientific monitoring uses catch-per-unit-
effort (CPUE) as a measure of abundance (Seminoff et al., 2008).

Green turtles have been a key food source for humans in the arid Baja California
peninsula since the earliest phases of human occupation at least 12,000 years ago
(cf. Early-Capistrán, 2014). From the late 18th century until the early 1950s, green turtle
harvests were primarily subsistence-oriented. Turtles were harpooned from small,
wooden canoes propelled with oars or paddles. During the 1960s, the economic and
demographic growth along the U.S.-Mexico border led to an increased market for green
turtle meat in Mexican border cities. BLA was a key supplier within this trade, and was
able to meet demands as the introduction of outboard motors, fiberglass vessels, and
set-nets increased cargo volume and catch efficiency. Additionally, improvement of
transport and communication infrastructure facilitated market access (Early-Capistrán
et al., 2018). The fishery collapsed in the 1970s, green turtle licenses were suspended in
1983 as populations reached dangerously low levels, and all sea turtle fishing in Mexico was
banned in 1990 (Márquez, 1996; Seminoff et al., 2008).
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Background research
This research is part of an on-going collaborative process in the community of BLA which
began in 2012 and has included ethnographic and historiographical research related to
human–ocean interaction, along with a review of scientific literature (Early-Capistrán
et al., 2018). Background research helped define specific research questions, identify
challenges in the study design and methods, and develop a general approach for

Figure 1 Overview of methodological processes used to document, synthesize and quantify Local Ecological Knowledge (LEK). The upper box
illustrates the iterative process described in Phases 1 and 2. This includes LEK documentation and synthesis; analysis with descriptive statistics,
generalized linear models (GLMs), and nonlinear regression (NLR); and integration of feedback from statistical analyses and local collaborators. This
iterative process was repeated until reaching topical, thematic, and data saturation, and until model fitting did not provide significant new infor-
mation. The lower box illustrates catch-per-unit-effort (CPUE) data standardization (Phase 3). The raw database (Raw CPUE Database Analysis)
contained average, representative CPUE values for a given year, and heterogeneous descriptor variables. We standardized CPUE values using GLMs
(CPUE Database Standardization) to (i) remove most of the variation not attributable to changes in abundance, and (ii) generate CPUE values that
could be compared over time. Full-size DOI: 10.7717/peerj.9494/fig-1
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integrating multiple forms of knowledge (Crandall et al., 2018; Early-Capistrán et al.,
2018).

Historiographical research situates biological questions in a socio-historical context,
providing information on a species’ past abundance which can be correlated with
time-frames, social processes, and management regimes (Article S1) (Crandall et al., 2018;
Sáenz-Arroyo et al., 2005). Historiographical research helped us understand human-green
turtle interactions in BLA over the past three centuries, identify the early 1960s as a
period when human impacts precipitated a major decline in green turtle abundance in
BLA, and establish the early 1950s as a time-frame for reconstructing baseline abundance
before large-scale commercial exploitation (Early-Capistrán et al., 2018).

Long-term collaboration with the community of BLA was fundamental for previously
establishing the rapport and working trust necessary to conduct transdisciplinary research.
Long-term engagement has also helped us acquire sensitivity to the cultural context,
gain an understanding of social conditions, and gather locally-relevant information to
define research questions and design (Bernard, 2011; Crandall et al., 2018). We also
established a network of local collaborators, whom we define as knowledgeable community
members willing to share their knowledge and expertise (Crandall et al., 2018). Due to
the fact that ecological knowledge is differentially acquired by social actors, we constructed
a heterogeneous network of social actors with diverse types of knowledge that, when
nested together, construct the ecological knowledge around green turtle abundance
(cf. Brown, 2010).

Experimental design

Qualitative methodology

Ethnography was our primary data-gathering methodology. This holistic approach to
the study of social systems uses a varied toolkit to generate both qualitative and
quantitative data (Table 1; Article S1; Table S1). Ethnography requires rapport, sensitivity
to the cultural context, and developing an understanding of the social system on its own
terms. Data are gathered broadly over topic areas and new questions are developed
continuously (Bernard, 2011; Early-Capistrán et al., 2018). Ethnography also helps identify
biases by analyzing data within a social and historical context (Drury, Homewood &
Randall, 2011). Ethnographic data are systematized, cross-referenced, verified, and subject
to analysis and meta-analysis (Bernard, 2011).

We chose ethnography because (i) the high degree of socio-environmental complexity
required detailed information on diverse topics; (ii) sea turtle fishing is currently
illegal in Mexico and its inquiry requires working trust, long-term engagement, and
confidentiality; and (iii) ethnography provides more detailed and reliable information on
sensitive issues than is provided by questionnaires (Drury, Homewood & Randall, 2011;
St. John et al., 2014). Research was designed in compliance with the ethical guidelines of
the International Society of Ethnobiology (Articles S1 and S2) (International Society of
Ethnobiology, 2006) and approved by the Bioethics Committee of the Centro de
Investigación Científica y de Educación Superior de Ensenada (Approval Number 2S.3.1).

Early-Capistrán et al. (2020), PeerJ, DOI 10.7717/peerj.9494 6/34

http://dx.doi.org/10.7717/peerj.9494/supp-1
http://dx.doi.org/10.7717/peerj.9494/supp-1
http://dx.doi.org/10.7717/peerj.9494/supp-3
http://dx.doi.org/10.7717/peerj.9494/supp-1
http://dx.doi.org/10.7717/peerj.9494/supp-2
http://dx.doi.org/10.7717/peerj.9494
https://peerj.com/


We defined three social groups within the community and documented their
knowledge. Fishers who participated in the legal green turtle fishery before 1990
(henceforth, turtle fishers) constituted the target population and provided the majority of
specialized LEK related to human-turtle interaction. This group was the main focus of
ethnographic research and contributed the majority of the qualitative and numerical data.
Key local collaborators—defined as community members with expertise in particular
topics—provided important complementary and contextual information on topics such as
local history, commerce, or foodways, among others. Finally, we gathered additional
complementary data from members of the community at large (henceforth, community
members), including fishers’ families, green turtle merchants, local authorities, commercial
and sport fishers, and conservation workers, to understand and incorporate multiple
perspectives. Methods and sample sizes used for each of these groups are discussed in
detail in “Documenting LEK”.

Table 1 Methods used for data collection during ethnographic field work. Sources: Bernard (2011); Crandall et al. (2018); Early-Capistrán et al. (2018).

Method Definition Example of applications Practical implications

Participant
observation

Studying a social group through a combination
of direct observation and immersion in group
activities as an active participant

Participating in and documenting sport-fishing
trips led by former green turtle fishers

All observations are compiled in
field notes and journals,
including, but not limited to
research topics

Informal
interviews

Interviews without structure or control, often
conversations held during the course of
fieldwork

Conversations with fishers or their family
members recorded in written notes

Recorded in field notes and field
journals

Semi-
structured
interviews

Interview based on a flexible list of written
questions or topics that need to be covered.
The interviewer maintains discretion to follow
new leads

Contributors were interviewed using an
interview guide with recurring topics focused
on the green turtle fishery

Recorded in audio or video with
the collaborators’ consent

In-depth
interviews

Aimed at obtaining detailed understanding of
the topic of interest. Participants can
communicate more freely and provide more
detailed descriptions than with semi-structured
interviews

Experts and key local collaborators were
interviewed in-depth on specific topics related
to green turtle fishing or abundance (e.g.:
fishing gear, green turtle commerce, etc.)

Recorded in audio or video with
the collaborators’ consent

Focus groups Moderated discussions with small groups (<10
people) on a particular topic

Focus group discussions with members of a
fishing crew to discuss how green turtle
abundance changed over the course of their
careers

Recorded in audio or video with
the collaborators’ consent

Oral histories In-depth interviews about life stories,
experiences, and eyewitness accounts

Interviewing experts on their life history and
their experience as green turtle fishers

Recorded in audio or video with
the collaborators’ consent

Participatory
mapping

Contributors draw maps, locate key places on
maps, or locate key sites together with
researchers

Visiting key green turtle fishing spots and
recording coordinates with GPS

Recorded in notes, digital maps,
GIS or printed maps

Social
network
analysis

Identifying the structure of social relations Documenting kinship and work relations among
green turtle fishers and merchants

Recorded in notes and graphs

Discourse
analysis

Analysis of communicative content and
structure focused on how meaning is
constructed and how power functions in a
society

Analyzing discourse on regulation or
conservation to identify biases that could affect
how fishers report on turtle catches

Analysis of ethnographic
materials; feedback integrated
into new questions
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We designed flexible interview guides for use in semi-structured and in-depth
interviews based on previous ethnographic research on sea turtle use in BLA
(Early-Capistrán et al., 2018). Interviewers M.M.E.C. and G.G.M. used these guides as a
roadmap for the interviews, allowing respondents to be thorough and make associations
between questions, and to include new topics and questions according to interview
progress (cf. De Castro et al., 2014). Interview guides covered five main topic areas:
(1) biographical profile and career history; (2) sea turtle consumption and commerce;
(3) trends in sea turtle captures and sizes; (4) spatial distribution of sea turtle fishing; and
(5) fishing effort and technology (Box 1). To prompt recollection of dates, questions were
associated with important events in local collaborators’ lives (Article S1). We piloted
questions with local fishers outside the target population (npilot = 2) and constantly refined

Box 1 Primary topic areas in interview guides.

1. Biographical data and career history

Year of birth

Years in the community

Years as a fisher

Years in the green turtle fishery

Crew members and fishing merchants with whom they worked

2. Sea turtle consumption and commerce

Domestic sea turtle consumption dynamics (before 1990 ban)

Market dynamics for sea turtle sale (how, where, and how often turtles were shipped)

Commercial dynamics (how turtles were sold, prices, working relationships, etc.)

3. Sea turtle catches and sizes

Maximum and minimum catches

Frequency of aggregations and large catches

Average catches

Perceived changes in abundance

Size distribution (maximum and mode sizes, frequency of catching large turtles)

Sea turtle ethnobiology (effects of seasonality, tides, green turtle behavior, etc.)

4. Spatial distribution of fishing

Frequently used fishing grounds

Hot-spot and aggregation dynamics

Changes in use of fishing grounds across time

Distances and travel times to fishing grounds

5. Fishing effort and technology

Use and efficiency of different gear types/gear designs

Use of different vessels

Use of different propulsion systems
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the questions to ensure that they were locally contextualized and elicited meaningful
answers (Bernard, 2011; Drury, Homewood & Randall, 2011; Young et al., 2018).

Reconstructing green turtle abundance through collective knowledge

Defining an approach to estimate green turtle abundance based on CPUE was a key
challenge. Although CPUE is a crude measure of changes in exploited populations
(López-Castro et al., 2010), we used it because (i) it is the only available metric of current
abundance and (ii) CPUE is an accepted proxy for abundance for IUCN Red Listing
(IUCN, 2019; O’Donnell, Pajaro & Vincent, 2010).

Adequate assessment of CPUE as a measure of abundance requires detailed
understanding of the fishery and the variables that affected it (Moller et al., 2004).
The skilled turtle fishers of BLA almost always targeted high-density locations (hot-spots)
and aggregations, and thus maximized CPUE by optimizing fishing patterns based
on empirical knowledge of environmental conditions and green turtle behavior
(Early-Capistrán et al., 2018). Consequently, turtle fishers’ expertise allowed for high
CPUE events over time despite declining overall abundance (hyper-stability),
underscoring the need to (i) account for this non-random search behavior and
(ii) understand central CPUE trends rather than exceptional catches (Article S1; Fig. S1)
(Anticamara et al., 2011; Early-Capistrán, 2014; Maunder & Punt, 2004; Selgrath et al.,
2018; Walters, 2003).

This scenario is challenging, as (i) interviewees’ memory of “typical” events may be
less accurate than that of salient events and (ii) high variability in CPUE and changes
in fishing efficiency can mask overall abundance trends (Maunder & Punt, 2004;
De Damasio et al., 2015; Sáenz-Arroyo & Revollo-Fernández, 2016). Thus, we designed
our methodology to calculate CPUE based on multiple sources rather than individual
recollections. We also aimed to identify and account for sources of variation in CPUE that
could bias proportionality with abundance, and to construct adequate proxies for variables
such as spatial distribution of fishing, differences in gear types, and changes in fleet
conditions (Walters, 2003; Maunder & Punt, 2004; Anticamara et al., 2011; Selgrath,
Gergel & Vincent, 2018).

We approached CPUE as a component of a holistic dataset on human-environment
interaction, and aimed to synthesize quantitative values on the basis of biocultural
consensus, which we define as the pooling of information for evaluating shared
environmental perceptions constructed by the summation of individual, community,
specialist, and holistic types of knowledge. Biocultural consensus is a synergistic,
interconnected set of contents and types of knowledge (c.f. Brown, 2010) in which the
resulting knowledge is greater than sum of its parts. In this case, we used knowledge
from all three social groups (turtle fishers, key local collaborators, and community
members) as inputs for constructing biocultural consensus. Our ethnographic research
was primarily focused on turtle fishers, who provided the majority of qualitative and
numerical data, as well as specialized LEK related to human-turtle interaction. Key local
collaborators and community members provided contextual and complementary data
(Fig. 2). Biocultural consensus helped build conceptual frameworks for modeling, establish
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limits and assumptions, estimate model parameters, and validate model outputs (Bélisle
et al., 2018).

As the primary response variable, we aimed to calculate representative values of CPUE
during a specific year with the initial definition:

CPUE ¼ number of turtles caught=unit effort (1)

For initial inquiry, we used the working definition of one unit effort as one night of
fishing (∼12 h) with either a harpoon or a set-net (Maunder & Punt, 2004). We continually
refined and updated this definition as we gained further information on fishing technology,
effort, and efficiency through the iterative feedback process between qualitative data,
NLR, and GLMs (Phase 2). We then standardized CPUE estimates to account for
differences in gears and changes in efficiency (Phase 3). As the final result of the iterative
feedback process, we obtained standardized, representative mean CPUE values for a
specific year, based on biocultural consensus of green turtle captures.

Figure 2 Biocultural consensus as a synergy of interconnected knowledge (adapted from Brown,
2010). Biocultural consensus was constructed with multiple and complementary contents and knowl-
edge types from three different social groups. Sample sizes, ethnographic methods, and interview
methods used with each group are provided. The target population of turtle fishers were the group with
which we collaborated most intensively and which provided the majority of LEK, as well as qualitative
and numerical data. Turtle fishers’ knowledge was complemented with knowledge from of key local
collaborators and community members. Biocultural consensus helped build conceptual frameworks for
modeling, establish limits and assumptions, estimate model parameters, and validate model outputs.

Full-size DOI: 10.7717/peerj.9494/fig-2
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Quantitative methods

Throughout the iterative process, we used descriptive statistics for exploratory data
analysis and to identify outliers (Zar, 2014). We used NLR to describe CPUE trends over
time and GLMs to identify significant predictor variables. We also integrated residual
analysis to ensure that model assumptions were met and to evaluate goodness of fit and
robustness. We ensured that residuals met the assumptions of zero mean, normal
distribution, homoscedasticity, and independence (ei ~ N(0, σ2)) (Table 2; Article S1)
(Maunder & Punt, 2004; Ritz & Streibig, 2008). In response to residual auto-correlation
found during preliminary phases and exploratory data analysis, as is common with time
series data, we integrated residual correlation structures to GLMs with residual
auto-correlation during the final stages of standardization (Zuur, 2009). All models
reported in the Results meet the assumptions for robust residuals according to the criteria
described in Table 2 (see also Article S1).

It should be noted that the statistical treatment is applied to the data series synthesized from
biocultural consensus. We used all available information to amass a year by year remembrance
of turtle captures by combining fishers’ knowledge with that of key local collaborators and
community members. Thus, our synthesized data is not derived directly from the individual,
yearly recollections of specific fishers, but instead are the result of collectively generated and
corroborated knowledge. Likewise, statistical analyses were not conducted in relation to the
social groups themselves (aside from simple demographic description), but rather to the
quantified data synthesized from their collective knowledge, which included sea turtle captures
as well as descriptor variables, coefficients, and indices (Table 3).

Phase 2: recording, synthesizing, and quantifying LEK
Documenting LEK
M.M.E.C. and G.G.M. compiled ethnographic data in BLA over three field seasons
(spring 2017, summer 2017, and spring 2018) and 57 working days. We obtained oral

Table 2 Tools and criteria for the model fitting and selection processes. Throughout the iterative process, we used nonlinear regression to
describe catch-per-unit-effort trends over time, and generalized linear models to identify significant predictor variables. Residual analyses were used
to ensure that model assumptions were met, and to evaluate goodness of fit and robustness.

Process Software Model selection criteria Residual analyses

Preliminary model selection
and starting values

LABFit 7.2.49 R2 value –

Nonlinear regression (NLR) R 3.4 (nlstools and
easynls package)

R2 value
Robust residuals: ei ~ N
(0, σ2)

Normality: Shapiro–Wilk test, p > 0.05
Mean = 0: t-test, p > 0.05
Homogeneity of variance: Levene’s test, p > 0.05
Randomness: runs test, p > 0.05
Auto-correlation: Pearson correlation test (residuals vs. lagged
residuals), p > 0.05 (i.e., Ho: ρ = 0, Ha: ρ ≠ 0)

Generalized linear model
(GLM)

R 3.4 (nlme, lmtest
and car packages)

Significant predictor
variables (p < 0.05)

D2 value
Low relative AIC
Robust residuals: ei ~ N
(0, σ2)

Normality: Shapiro–Wilk test, p > 0.05
Mean = 0: t-test, p > 0.05
Homogeneity of variance: Levene’s test, p > 0.05
Randomness: runs test, p > 0.05
Auto-correlation: Durbin–Watson test, p > 0.05
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informed consent from all participants prior to the start of interviews, and recorded
interviews in audio or video and took technical photographs when possible (Article S1;
Tables S2 and S3) (International Society of Ethnobiology, 2006). We chose oral consent as it
was not deemed culturally appropriate to ask participants to sign a consent document
and because some participants were not comfortable with written language (International
Society of Ethnobiology, 2006; Wedemeyer-Strombel et al., 2019). We conducted all
interviews in Spanish—our primary language and that of the collaborators—and
transcribed recorded interviews in digital format (.txt). We also compiled field journals
in digital format (.txt), recording all observations in detail (Article S1).

We validated ethnographic data through triangulation among (i) participants (e.g., data
were independently corroborated and verified by multiple local collaborators),
(ii) sources (e.g., documents, photographs, scientific literature, etc.), and/or (iii) methods
(e.g, interviews, archive research, etc.). Once processed, we member-checked data for
reliability by asking local collaborators from all groups if our themes or categories were
locally relevant and congruent. We also asked local collaborators to identify data gaps,
and inquired if overall accounts and processes were described in a manner that was
realistic and accurate (Creswell & Miller, 2000; Tengö et al., 2014). Prolonged engagement
in the field allowed us to compare interview data with observations, and helped build trust
so that participants were comfortable disclosing information, increasing reliability in
responses (Bernard, 2011).

We identified turtle fishers using a deliberate hierarchical sampling method (Bernard,
2011), Turtle fishers are a small group of the oldest fishers in the community, between
55 and 85 years of age (Nfishers = 17). We interviewed 94% of turtle fishers, as one fisher
chose not to participate. All fishers in the population and sample were men. With this
target group, we continuously carried out participant observation, and conducted 17
semi-structured interviews (at least one per person), along with 27 informal interviews.
Within this target population, we identified a subset of seven expert LEK holders,
which we defined as turtle fishers recognized as experts by at least two peers, and
whose empirical and specialized knowledge can be used as a basis for inferences and
assessments about their surrounding environments and biota (cf. Bélisle et al., 2018). With
the group of expert LEK holders, along with the aforementioned methods, we conducted
seven in-depth interviews and one focus group discussion to gather specialized data
(Tengö et al., 2014).

We identified key local collaborators (nklc = 7) through purposive and respondent-
driven sampling (Bernard, 2011). Key local collaborators were primarily older (>63: 71%)
and included women (43%) and men (57%). We continuously carried out participant
observation with this group, and conducted four in-depth interviews and 23 informal
interviews. Topics included: local history, economy, commerce, and foodways; marine and
terrestrial ethnobiology and conservation; and commercial and sport fishing, among
others, which provided valuable information for situating green turtle fishing within a
broader socio-ecological context (Crandall et al., 2018).

We selected local collaborators from the community at large (ncm = 48) through a
combination of cluster sampling and self-selection (Bernard, 2011). They represented ~8%
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Table 3 Variables, coefficients, and indices.

Variable or
coefficient

Type Index Source

Year of birth Numerical Date Standard question in interviews

Dates working in the
green turtle fishery

Range Interval of dates Standard question in interviews

Experience in the
green turtle fishery

Ordinal 1 = 1–5 years
2 = 6–10 years
3 = 11–15 years

Binned from dates working in the fishery

Generation Categorical 1 = Fishers who worked in commercial
development and commercial fishing stages

Category of cohorts of fishers defined based on the fishery
stages in which the contributor worked

2 = Fishers who worked during the collapse stage

3 = Fishers who worked through all stages

Fishery stage Categorical 1 = Commercial development Defined based on qualitative data on the fishery

2 = Commercial fishing (harpoon)

3 = Commercial fishing (nets)

4 = Collapse

Year Numerical Date for which the average CPUE is being
described

Obtained directly from interviews (numerical value) or
calculated based on heuristic rules (details in S.I.)

Fishing gear Ordinal 1 = Harpoon Binned from interviews or inferred based on heuristic rules

2 = Short set-net (~100 m)

3 = Long set-net (~200 m)

Harpooner skill
coefficient

Percentage Percentage of success (50–99%)a Obtained from interview data and assigned to
contributors based on social network analysis

Number of nets Numerical Number of nets usedb Obtained directly from interviews or inferred based on
heuristic rules

Vessel type Ordinal Type of vessel used
1 = Wooden canoe (12–15 ft length)

Binned from interviews or inferred based on heuristic
rules

2 = Fiberglass skiff (20–22 ft length)

3 = Boat (variable length)

Vessel capacity Ordinal Gross vessel tonnage Binned from interviews or inferred based on heuristic rules

1 = Less than 1 ton

2 = 1–1.5 tons

3 = Greater than 1.5 tons

Propulsionc Categorical 1 = Oars
2 = Motor (5–10 horse-power)
3 = Motor (15–40 horse-power)

Obtained directly from interviews or inferred based on
heuristic rules

Trip durationc Numerical
or interval

Number of days between leaving port and
returning with a catch of turtles at vessel capacity

Minimum limit: 1 day
Maximum limit: 10 days

Obtained directly from interviews or inferred based on
heuristic rules
(S.I., Eqn. S1, S2)

Fishing time Numerical Number of nights spent fishing on a trip of regular
duration

Obtained directly from interviews or inferred based on
heuristic rules (S.I., Eqn. S1, S2)

Average CPUE Numerical Average number of turtles caught in one night
during a specific year

Obtained directly from interviews (numerical value) or
calculated based on heuristic rules

Notes:
a Not assigned to captures with nets.
b Not assigned to harpoon captures.
c Proxies for spatial distribution of fishing.
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of the population of BLA and included women (42%) and men (58%). Ages ranged from
18 to 93, with young (18–39: 35%), middle-aged (40–62: 37%), and older (>63: 28%)
participants. While we did not inquire about income given local social taboos, local
collaborators came from across all class strata with schooling varying from individuals
without formal schooling to graduate degree holders. The group included both long-term
residents (89%) and short-term residents (11%) such as conservation workers and
government employes. This diverse group provided a broad view of perspectives and topics
to complement and contextualize information from the target population of turtle fishers.
With this group, we continuously carried out participant observation and conducted 72
informal interviews.

Cataloguing LEK
We processed and coded all field journals and interview transcriptions following a
standardized protocol. We used footnotes to separate observations from analysis, and for
cross-referencing. Cryptic indicators ensured local collaborators’ anonymity (Bernard,
2011). We used cultural material codes (Murdock et al., 2008) to categorize ethnographic
data, with customized codes for topics and themes specific to this research. We indexed
text entries using hashtags (#) to mark relevant topics (e.g., #fishing_gear), including
ordinal codes (e.g., #max_cpue; #min_cpue) to classify information for data-binning
(Article S1; see Table S4 for an example field journal entry). Along with data compiled in
the 2017 and 2018 field seasons, we coded and indexed ethnographic materials collected
since 2012 for integration into the qualitative database (Article S1; Tables S2 and S3).
Coding allowed us to break down qualitative data into analytical variables and raw values
(Strauss & Corbin, 1994). Digital files allowed for analyzing large volumes of information
by facilitating topic-specific searches, generating a corroborated, systematized, and
cross-referenced qualitative database (Bernard, 2011).

Synthesizing and quantifying LEK
Qualitative analyses

We used qualitative textual analysis and discourse analysis to decipher the cultural,
historical, and political dimensions of the research topic; to identify potential sources of
bias; and to understand categories, processes, and connections (Crandall et al., 2018)
(Table S1). We captured raw numerical data from interviews (Article S1; Table S4),
and used Quantitative Textual Analysis tools in R 3.4 (wordcloud, tm, and SnowBallC
packages) to identify themes and patterns over large volumes of text, for a general overview
(Bernard, 2011; R Core Team, 2019) (Article S1; Figs. S2 and S3). These themes helped us
to identify potential descriptor variables, indices, and topics for inquiry.

Quantifying LEK data

We defined explanatory variables for CPUE based on qualitative data (Table 3).
We generated initial indices for each variable based on the degree of detail and variation
observed in interview responses, and defined standardization and binning procedures
(Fig. 1).
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We established four stages for the BLA green turtle fishery based on fishery landing
statistics and previous research (Early-Capistrán et al., 2018; Selgrath, Gergel & Vincent,
2018): (1) commercial development; (2) commercial fishing (harpoons); (3) commercial
fishing (nets); and (4) collapse (Table 4). Qualitative data allowed for inferring that
(i) fishing technology across the fleet was similar within each stage; (ii) at all stages, fishers
would make trips of varying duration until reaching vessel capacity or exhausting food
and water supplies; and, thus, (iii) CPUE could be calculated based on the knowledge of
fisheries stages, trip duration, fishing gear type, displacement time, and vessel capacity
(Article S1). This framework allowed us to (i) bin data and standardize variations in
expertise and response terms, (ii) systematically complement the knowledge of less
experienced fishers with that of expert LEK holders, and (iii) account for changes in fishing
technology, effort, and efficiency over time (cf. Maunder & Punt, 2004).

We generated digital (.txt) files to summarize categorical, ordinal, and numerical data
for each fisher (Article S1; Table S5). Using social network analysis (Bernard, 2011), we
situated each fisher in relation to their fishing crew and extended family (Table 1).
Ethnographic and LEK data provided us with numerical anchor values and limits for
variables during each stage (Bélisle et al., 2018) (Article S1).

CPUE calculation and preliminary database generation
To deal with variability, we used heuristic rules to make systematic inferences based on
the knowledge of expert LEK holders (Fig. 3). This framework allowed us to calculate a
central tendency based on collectively-generated knowledge and biocultural
consensus rather than individual recollection, thus reducing individual cognitive bias
(Article S1).

We converted captures reported by weight to number of turtles by dividing vessel
capacity by mode of turtle mass (50 kg) reported by fishers and corroborated with
monitoring data (Early-Capistrán et al., 2018) (Article S1). While turtle size was highly
variable and likely declined in response to increasing fishing effort (Table 4), mixed
juvenile/adult foraging groups with a slight juvenile bias—such as BLA, where ~56% of
individuals are juveniles (Seminoff et al., 2003)—are present in green turtle foraging
habitats worldwide (Seminoff et al., 2015). Thus, we consider our assumption regarding
size distribution to be adequate given the nature of the data (Table 4; Article S1).

Preliminary data evaluation
We estimated CPUE and descriptor variables through an iterative process. We stored data
in .csv format and carried out all analyses in R 3.4 unless otherwise specified (R Core Team,
2019). We analyzed descriptive statistics to evaluate statistical robustness by checking
data distribution, evaluating normality (Shapiro–Wilk p > 0.05), and identifying outliers
(±2 SD) (Zar, 2014). Each CPUE data point was linked to a summary of qualitative and
numerical data for a specific collaborator, and outlying data were contextualized and
evaluated (Article S1; Table S5). Over the course of the iterative process, we discarded three
CPUE values from fishers who (i) had less than 1 year of experience and (ii) were very
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young (10–13 years of age) when they captured turtles. During interviews, these fishers
recognized that they had limited recollection of events and did not have the experience
necessary to provide precise data. Statistical analysis confirmed that CPUE values provided
by this group were outliers (±2 SD).

To evaluate CPUE trends, we converted values for the independent variable “year” to
serial form in all analyses. We used LABFit 7.2.49 to identify five preliminary models
with best fit and their respective starting values. We then ran NLR (nlstools, easynls,
dplyr, car, andDescTools packages; Data and Code) to choose the model that best described
the data, and evaluated residuals (Table 2). We ran NLR at each round of the iterative
process to (i) evaluate the general behavior and performance of the data, (ii) identify
outlier effects in residual analysis, and (iii) evaluate if the process was robust to these effects

Table 4 Fishery stages and characteristics.

Commercial development
(1950–1959)

Commercial fishing
(harpoons)
(1960–1965)

Commercial fishing (nets)
(1966–1972)

Collapse
(1974–1982)

General
characteristics

First years of the commercial
fishery, with limited
technology and fishing
effort

Intense growth in
demand leads to
declining captures

Increasing fishing effort and
efficiency, declining captures

Commercial collapse. Species abundance
near extinction.

Regulation Unregulated Unregulated Limited regulation: minimum
size, permit restrictions,
seasonal bans
Temporary ban (1971)

Highly regulated: minimum size, permit
restrictions, seasonal bans, nesting
beach protection (1980-present)
Green turtle licenses suspended (1983)

Gear type Harpoons Harpoons Set-nets Set-nets

Fleet conditions Wooden canoes
Oars or paddles

Wooden canoes
5–10 horse-power
outboard motors

Canoes or skiffs
5–10 horse-power outboard
motors

Fiberglass skiffs
15–45 horse-power outboard motors

Spatial
distribution of
fishinga

Overnight trips close to port
are frequent

Motors allow faster
displacement to
farther fishing
grounds
Occasional trips >50
nautical miles

Trips >50 nautical miles are
frequent
Expeditions >100 nautical
miles are frequent (canoes or
skiffs off-loading to boats)

Trips >50 nautical miles are frequent

Size
distributionb

Turtles ~150 kg caught
frequently (spans of weeks/
months)
Mode weight: 50 kg

Turtles ~150 kg
caught frequently
(spans of weeks/
months)
Mode weight: 50 kg

Turtles 100–150 kg caught
occasionally (spans of
seasons/years)
Mode weight: 50 kg

Turtles 100–150 kg caught rarely (spans
of years)
Mode weight: 50 kg

Fishing
efficiency

Low Low/Moderate Moderate High

Fishing effort Low High High Low

Commercial
demand

Moderate High High/moderate Moderate

Profitability High High High/Declining Not profitable

Notes:
a Throughout the chronology, spatial distribution of fishing was highly variable due to the targeting of hot-spots and variations in the seasonal distribution of turtles.
b Size distribution was highly variable throughout the chronology.
Characteristics from qualitative LEK and Early-Capistrán et al. (2018), Márquez (1996), and Seminoff et al. (2008).
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(Baty et al., 2015; Ritz & Streibig, 2008). An exponential decay model consistently showed
the best fit, with the form

Y�a � eðbxÞ (2)

where Y is the response variable, CPUE; a is a constant (intercept); β is an instantaneous
rate of change in the response variable (slope); and x is the independent variable “year”.

We used GLMs with a link function for Gaussian distributions to identify significant
predictor variables for CPUE (nlme, dplyr, car and DescTools packages), using
log-transformed values if the CPUE distribution was non-normal (Zar, 2014). We ran
backward-stepping models until we obtained a model with significant effects, a high
percentage of explained deviance (D2), a relatively low Akaike Information Criterion
(AIC), and robust residuals (Table 2) (cf. Maunder & Punt, 2004).

Figure 3 Heuristic rules used to make systematic inferences based on expert knowledge to calculate raw catch-per-unit-effort values. We used
heuristic rules to make systematic inferences based on the knowledge of expert turtle fishers (Phase 2, “CPUE Calculation and Preliminary Database
Generation”). This framework allowed us to reduce individual cognitive bias by (i) complementing the knowledge of less experienced fishers with
that of experts, and (ii) calculating a central tendency based on collectively-generated knowledge and biocultural consensus.

Full-size DOI: 10.7717/peerj.9494/fig-3
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We ran a total of 36 NLR and 54 GLMs on five sequential working databases. The first
three databases each corresponded to one round of the methodological cycle (Fig. 1).
With each round, the working databases were updated and superseded as we incorporated
new data, variables, indices, analyses, and data cleaning processes (Figs. 1, 3 and 4).
The last two databases consisted of the final raw database—with LEK-derived CPUE values
and heterogeneous variables for unit effort—and the standardized database with mean
standardized CPUE values for each year (Data and Code). By integrating these analyses
into the cyclical process, we are confident that we adequately identified confounding
variables and sources of variation not attributable to changes in abundance (Hilborn &
Walters, 1992).

Feedback integration

We integrated model-fitting feedback by identifying which variables and indices required
further information or could be improved (Fig. 4). We integrated feedback from

Figure 4 Cyclical process of index design and feedback integration. We revised indices and coefficients based on a cyclical process which used
feedback from interviews, statistical analysis, and generalized linear models (GLMs) to design new questions. This was repeated for each variable
throughout Phase 2. Bold type shows numerical data from interviews. Full-size DOI: 10.7717/peerj.9494/fig-4
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community members during subsequent visits to the field by sharing preliminary results
and model outputs with them through narrative description, and asking for collaborators’
perspectives on validity and consistency (Bélisle et al., 2018). Local collaborators also
identified gaps and provided further information (Huntington, 2000; Tengö et al., 2014).
We then designed new questions based on feedback and repeated these procedures with
each variable (Figs. 1 and 4).

We repeated the cyclical process of data gathering, synthesis, and quantification until
reaching topical saturation (similar instances were repeated and no additional data
were found with which to develop new properties), thematic saturation (additional data
did not produce new emerging themes), data saturation (new data repeated what was
expressed in previous data) (Saunders et al., 2018), and until model fitting did not provide
significant new information.

Time frames required to reach saturation are extensive, in the order of months or years.
Ethnographic fieldwork generally requires a year or more, given the extensive time
required to establish rapport, obtain working knowledge and understanding of the cultural
context, and to be able to ask good questions and obtain good answers (Bernard, 2011).
The interview process to elicit the data presented in this article represented 57 working
days over three field seasons (spring 2017, summer 2017, and spring 2018). While it may
seem a rather short timeframe, it must be said that two of the authors, M.M.E.C. and
G.G.M., have been conducting ethnographic work in the community since the summer
of 2012, making seven trips to the region with a mean duration of 27 days, conducting
a total of 378 interviews to date (Tables S2 and S3), and maintaining contact and
communication with community members between field seasons. Long-term continuous
interaction has allowed rapport for intelligible dialog among researchers and local
community members in ways that enable elicitation of trustworthy data.

Phase 3: database standardization and validation
Raw CPUE database analysis
The result of the methodological cycle was a final, LEK-derived CPUE database with
heterogeneous variables for unit effort (raw database) (Fig. 1). We carried out descriptive
statistical analysis, NLR, and GLM analysis to evaluate the data and define standardization
procedures as described in “Preliminary Data Evaluation”.

CPUE database standardization
We standardized CPUE to (i) remove most of the variation not attributable to changes
in abundance by accounting for variables such as gears, fleet characteristics, fishers’
experience, etc.; and (ii) generate CPUE values that could be compared over time
(Hilborn & Walters, 1992; Maunder & Punt, 2004). To choose predictor variables for
standardization, we ran GLMs (nlme, car, dplyr, and DescTools packages; Data and Code)
with log-transformed CPUE values and a residual correlation structure based on an
auto-regressive model of order 1 (AR-1) structured by the variable “year” (Zuur, 2009).
We chose predictor variables for standardization using models with significant effects, high
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percentage of explained deviance (D2), relatively low Akaike Information Criterion (AIC),
and robust residuals (Table 2) (cf. Maunder & Punt, 2004).

We generated detailed definitions of unit effort based on these analyses, in order to
obtain comparable values for turtles caught in one night. While fishers generally
worked from dusk to dawn, fishing times on any given night with either gear type could be
variable. For modeling purposes, we simplified values to 12 h blocks which reflect the vast
majority of fishing effort (Article S1).

For set-nets, we standardized unit effort to approximate ecological monitoring data
(100 m net soaking for 12 h) (Koch, 2013; Seminoff et al., 2003):

Cst ¼ ðt � RÞ=ðnr � R � 12 hÞ (3)

where Cst is a standardized, representative value of CPUE during a specific year (turtles
12 h−1); t is the number of turtles caught (turtles); and nr is the number of 100 m nets
(no units). R is net length (in multiples of 100 m), simplified to short (~100 m = R) or long
(~200 m = 2R) (Table 3). Soaking time is 12 h.

For harpoon captures, we assigned a skill coefficient (s, percentage of success) (Table 3)
to each harpooner through social network analysis (Table 1), based on colleagues’
assessment, such that:

Cst ¼ t � s�1 � 12 h�1 (4)

The current ban on sea turtle fishing does not allow us to test for differences in
susceptibility to fishing gears. Harpoons and nets were not used simultaneously by any
given fisher, and both were used over a roughly equivalent number of hours per night.
Thus, we considered these values to be adequately standardized given the nature of the
data. For years with multiple CPUE values, we calculated the mean after standardization
(Article S1; Figs. S4 and S5).

Evaluating statistical robustness
We evaluated reliability through comparison with green turtle fishery statistics for BLA
(annual landings in tons, 1962–1982) (Márquez cited in Seminoff et al. (2008)). CPUE and
total landings are both crude indicators of abundance, and comparative analyses have been
used to assess the accuracy of LEK-derived data (De Damasio et al., 2015; Sáenz-Arroyo &
Revollo-Fernández, 2016). We compared the catch reduction rate and fitted an
exponential decay model (QtiPlot 0.9.9.7) as an experimental process to evaluate trends
in LEK-derived CPUE and annual landings (Article S1). We then standardized both
datasets to z-scores to avoid effects from differences in scales (Fig. S6) and used the Lin
Concordance Correlation Coefficient (Lin CCC) to assess agreement between paired
values (DescTools package; Data and Code) (Lin, 1989; Altman & Altman, 1999)
(Article S1; Fig. S6).

Phase 4: analysis of standardized CPUE data
We performed descriptive statistical analysis and NLR on the standardized database,
following the procedures described in “Preliminary Data Evaluation”, to understand
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long-term abundance trends. We chose NLR for final analyses because (i) analyses
conducted in Phases 2 and 3 consistently showed an exponential decay trend, and
(ii) standardized CPUE data were not normally distributed (Shapiro–Wilk, p = 0.00334),
and NLR does not assume normally distributed data (Ritz & Streibig, 2008).

We ran a global sensitivity analysis using Markov-Chain Montecarlo (MCMC) methods
in R 3.4 (FME package; Data and Code) to derive the data-dependent probability
distribution of the parameters. An MCMC samples from probability distributions to
generate an ensemble of parameter values that represent the parameter distribution
(Soetaert & Petzoldt, 2010). We ran an MCMCwith initial values from the model with best
fit (a = 18.911, β = −0.264), with non-informative priors and 5000 iterations. We then
estimated the effect of parameter uncertainty on the model output and generated a
posterior predictive distribution of the model by taking a sample of the parameter
probability function generated by the MCMC, running the model 100 times using a
random draw of the parameters in the chain, and adding randomly distributed noise to
estimate measurement error (Soetaert & Petzoldt, 2010).

RESULTS
We generated a reliable, standardized green turtle fishery CPUE time-series from 1952 to
1982 by synthesizing and quantifying LEK. Three GLMs fit selection criteria to be used for
database standardization, as described in “CPUE Database Standardization” (Table 2).
These models showed that year, fishing gear type, vessel capacity, number of nets, net
length, and fisher’s experience were significant predictor values for CPUE (Table 5). Given
that each of these variables was incorporated into CPUE calculation and standardization,
we are confident that both our estimates and standardization procedure were robust.
Comparative analysis with fishery landing statistics confirmed accuracy: standardized
CPUE and annual landings showed catch declines of 95% and 96%, respectively, and Lin
CCC (ρ = 0.726) showed strong agreement (Fig. 5).

All fishers consistently reported a declining trend during the fishery. This was consistent
with our models. The NLR with best fit indicated that green turtle abundance declined
exponentially through the four phases of the sea turtle fishery, likely driven by large-scale
commercial exploitation with increased fishing effort and efficiency from 1960 to 1980
(R2 = 0.798) (Table 6; Fig. 6). Residual analysis suggested that the model was robust for
the data (Table 2). MCMC sensitivity analysis suggested that our model is robust over
parameter intervals for a (15–35) and β (−0.12 to −0.06). Parameter values for the
model with best fit (a = 24.112, β = −0.0929) occurred within these intervals (Fig. S7).
Furthermore, 94% of our data points occurred within the posterior predictive distribution,
confirming that the model was a good fit for the data (Fig. S8).

DISCUSSION
Integrative methodological innovation
The importance of LEK data is increasingly recognized in conservation science (Lee et al.,
2018; Mason et al., 2019). However, there has been reticence in the scientific community
regarding the use of LEK due to concerns about accuracy, reliability, and potential biases
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caused by differences in individual perception, memory, and recollection (O’Donnell,
Pajaro & Vincent, 2010; Daw, Robinson & Graham, 2011). We are confident that such
issues can be overcome through innovative, transdisciplinary methodologies that
incorporate trusted methods from the social sciences and epistemological frameworks for
incorporating multiple knowledge systems (Reed, 2008; Tengö et al., 2014; St. John et al.,
2014). Our work contributes to overcoming key scientific challenges of using LEK
as a consistent source of information by combining rigorous approaches to LEK
documentation, synthesis, quantification, and statistical analysis.

We have approached the issues of accuracy, reliability, and recollection bias through
several complementary processes. We used ethnography to document LEK, collecting
verified, corroborated, and detailed qualitative and numerical data. Ethnographic data
allowed for increased accuracy and reliability in comparison with data derived from
structured questionnaire-based surveys or interviews alone. This particularly relevant in
scenarios of high socio-environmental and biological complexity where multiple variables
can affect or bias estimates of species abundance (Crandall et al., 2018; St. John et al., 2014).
Ethnographic data also allowed us to understand the trajectory of human impacts on
green turtle abundance in detail. This approach allowed us to describe, quantify, and
integrate the social, economic, and technological processes that affected the green turtle

Table 5 Generalized linear model (GLM) results for the raw catch-per-unit-effort (CPUE) database.
The three most parsimonious GLMs for the raw database suggested that fishing gear type, vessel capacity,
and number of nets were significant predictor variables for CPUE. Italics indicate significant results at
a = 0.95. Asterisks indicate significant result at a = 0.90; this variable was included to ensure robust
residuals.

Predictors Estimate Std. error P-value

Model 1: log(cpue) ~ Year serial + Experience + Vessel Capacity −1; AIC: 4.422; D2 = 0.775;
df = 32; ei ~ N(0, σ2)

Correlation structure: Auto-regressive, Formula: ∼Year serial
Year (serialised) −0.278 0.00434 0.000

Experience 0.333 0.0328 0.000

Vessel Capacity 0.330 0.0692 0.000

Model 2: log(cpue) ~ Year serial + Gear + Total Net Length + Number of Nets + Experience – 1;
AIC: 10.215; D2 = 0.925; df = 20; ei ~ N(0, σ2)

Correlation structure: Auto-regressive, Formula: ∼Year serial
Year (serialised) −0.0239 0.0061 0.0014

Gear type 0.396 0.0980 0.0011

Total net length −0.150 0.0429 0.0033

Number of nets 0.238 0.0750 0.0062

Experience 0.0969 0.0494 0.0689*

Model 3: log(cpue) ~ Year serial + Gear + Net Length −1; AIC: −11.710; D2 = 0.971; df = 32; ei ~ N(0, σ2)

Correlation Structure: Auto-regressive, Formula: ∼Year Serial
Year (serialised) −0.0284 0.00465 0.000

Gear type 1.324 0.0689 0.000

Net length −1.321 0.0680 0.000
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fishery into our estimates and indices (e.g., changes in fishing gear and displacement
capacities, commercial demand, spatial dynamics, etc.). Thus, we incorporated detailed
knowledge of the nature and evolution of the green turtle fishery into our models.
We reduced cognitive bias and recollection bias by estimating CPUE on the basis of
biocultural consensus from multiple, nested knowledge systems rather than direct
individual recollection. Finally, we integrated statistical analysis and feedback throughout
all phases of our methodology to assure statistical robustness.
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Figure 5 Exponential decay model fitted to standardized catch-per-unit-effort (CPUE) values for
C. mydas in Bahías de los Ángeles, derived from local ecological knowledge (LEK). Data points are
mean, standardized LEK-derived CPUE values for a specific year (red triangles and dotted line; left
Y-axis) and total annual landings from available fisheries statistics for Bahía de los Ángeles (blue circles
and dotted line; right Y-axis) (Márquez in Seminoff et al. (2008)). Curves represent suggested trends based
on an exponential decay model (details in Article S1). Lin Concordance Correlation Coefficient of paired
z-scores suggests strong agreement between datasets (see also Fig. S6).

Full-size DOI: 10.7717/peerj.9494/fig-5

Table 6 Results of nonlinear regression with best fit for catch-per-unit-effort estimates derived from
local ecological knowledge. Italics indicate significant results at a = 0.95. See also Fig. 6.

Parameter Estimate Std. error 95% CI t-value P-value

a 24.112 3.124 [17.413–30.812] 7.719 2.07e-06

β −0.0829 0.0130 [−0.111 to −0.0551] −6.382 1.71e-05

Note:
Model: Y ~ a ∙ e(βx); df = 14; ei ~ N(0,σ2).
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The strong concurrence of our LEK-derived CPUE estimates with fishery landing
data for the historical fishery years (1962–1982) helps confirm the accuracy of LEK as
a source of information for understanding population trends in the recent past
(De Damasio et al., 2015; Sáenz-Arroyo & Revollo-Fernández, 2016). Robust model-fitting
and sensitivity analyses confirmed statistical reliability. Thus, we are confident that our
methods provide practical approaches to the scientific challenges of using LEK in
conjunction with ecological modeling through detailed LEK documentation, biocultural
consensus, and continuous statistical analysis and feedback.

Spatial dynamics present an interesting area of opportunity for future research building
upon our methods. The development of sound approaches to management and
conservation requires understanding fishing effort over both space and time (Anticamara
et al., 2011; Selgrath et al., 2018). We approached spatial variability through proxies
(e.g., propulsion and trip duration, Tables 3 and 4) due to the very high variability and
complexity of spatial dynamics over time. Given that our primary focus was on temporal

Figure 6 Exponential decay model fitted to mean, standardized catch-per-unit-effort (CPUE) values
for C. mydas in Bahía de los Ángeles, derived from local ecological knowledge (LEK). Curve repre-
sents the nonlinear regression with best fit and robust residuals, based on an exponential decay model.
Each data point is a representative, mean, standardized CPUE value for a specific year derived from LEK
data. Colors represent fishery stages (see Table 4). Parameter values, standard error, confidence intervals,
t-values, and P-values can be found in Table 6. Full-size DOI: 10.7717/peerj.9494/fig-6
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trends in CPUE, these proxies provided a simple index to account for spatial effort
(Hilborn & Walters, 1992; Walters, 2003). LEK-based studies of spatial dynamics have
primarily been conducted with present-day, data-poor fisheries (cf. Moore et al., 2010;
Moreno-Báez et al., 2010; Selgrath et al., 2018). In future, the application of our methods
for detailed reconstruction of the spatial dynamics of the green turtle fishery through
LEK could have important potential for uncovering historical green turtle spatial
distribution and habitat use, and understanding changes in spatial dynamics over broad
temporal scales.

We recognize that LEK data is epistemologically distinct from technical data, and have
aimed to bridge epistemological gaps and produce a synergistic integration of LEK and
scientific methods (cf. Brook & McLachlan, 2005; Tengö et al., 2014). As scientists, we
recognize that our research is value-laden and that the inevitable differences between
LEK and technical data are more often reflections of epistemological differences or
methods of collection than inherent unreliability (Brook & McLachlan, 2005). LEK
research requires trust-based collaboration between researchers and communities, a
process that can necessitate years of commitment (Brook & McLachlan, 2005). In such
contexts, when researchers can elicit and corroborate qualitative data derived from
empirically-lived situations (Palmer & Wadley, 2007), synthesize and quantify this data,
and submit quantified data to rigorous mathematical analysis, they can assure that
LEK-derived estimates are accurate and statistically reliable. Such information is of crucial
importance for conservation and management, particularly in scenarios where there is a
need for understanding long-term trends; where technical data are scarce or unavailable;
or where species are impacted by illegal, unregulated or undocumented exploitation
(Duffy et al., 2016; Pauly, 1995; Sáenz-Arroyo & Revollo-Fernández, 2016). Concomitantly,
the integration of LEK and scientific knowledge offers the possibilities of incorporating and
empowering local conservation processes with peoples previously seen as deleterious
agents for those same environments and species of which they hold a vast amount of LEK
(cf. Berkes et al., 2005). Lastly, the use of LEK provides comprehensive understanding of
complex and dynamic socio-ecological processes while facilitating the creation and
implementation of culturally appropriate local solutions to environmental problems
(cf. Reed, 2008; Brown, 2010).

Understanding east pacific green turtle population trends
Our LEK-derived CPUE data provide a baseline abundance of green turtles before
large-scale commercial exploitation at a key feeding area in the Gulf of California, and
describe population trends prior to ecological monitoring which are essential for
establishing conservation and management goals (McClenachan et al., 2016; Seminoff
et al., 2003). Our approach provides a historical reference point for the Bahía de los
Ángeles foraging population and enables us to better understand contemporary datasets
and current population status in the area (Seminoff et al., 2008). Our results suggest
that fishery-derived mortality exceeded replacement via reproduction or immigration rates
into the feeding areas (Chaloupka & Musick, 1996). Furthermore, although fishing effort
and efficiency increased over time, previous CPUE could not be maintained due to the
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overall decline in green turtle abundance (Hilborn & Walters, 1992). We are confident
that CPUE values in the 1950s can be considered an adequate historical baseline
abundance level, based on previous research which identified the early 1960s as a period
when human impacts precipitated a major decline in green turtle abundance in the Gulf of
California (Early-Capistrán et al., 2018).

Future research that pairs LEK-derived estimates with contemporary in-water
monitoring and nesting data can provide fundamental insights for conservation status
evaluations such as those conducted under the auspices of the IUCN Red List (Mazaris
et al., 2017; Seminoff & Shanker, 2008). Such long-term perspectives are generally not
attainable via scientific monitoring efforts alone, especially considering that although sea
turtles have been exploited worldwide for centuries or millennia, even the longest tenured
sea turtle monitoring programs only started the 1960s (Balazs & Chaloupka, 2004;
Bjorndal, Bolten & Chaloupka, 2005; Chaloupka & Limpus, 2001; Márquez, 1996).

In the case of BLA, existing baseline data from 1995 correspond to a decimated
population, and would thus be prone to over-estimating the degree of initial recovery
observed from the early 2000s onward (Delgado-Trejo, 2016; Pauly, 1995; Seminoff et al.,
2015). Currently, scientific surveys are conducted monthly using CPUE as an index.
Catch effort is variable within specific parameters, using 100–200 m set-nets and 12–24 h
soak times (Koch, 2013; Seminoff et al., 2008). In future, our standardized LEK-derived
CPUE estimates can be integrated with standardized monitoring data to provide a
long-term view of green turtle abundance at this index feeding area. Integration of past
trends with modern-day survey data is crucial for evaluating the overall conservation status
of the East Pacific green turtle with references to baseline abundance levels prior to
large-scale commercial exploitation (Broderick et al., 2006; Seminoff & Shanker, 2008;
Wildermann et al., 2018).

CONCLUSIONS
Our reconstruction of baseline conditions revealed an exponential decline in green turtle
abundance between 1960 and 1980 at Bahía de los Ángeles, one of the most important and
productive green turtle commercial fishing areas in the eastern Pacific Ocean (Caldwell,
1963; Early-Capistrán et al., 2018). As scientific monitoring began only in 1995 after
population collapse, no pre-exploitation baseline data were available to evaluate current
abundance and conservation status (Seminoff et al., 2008). Our LEK-derived data can
now provide historical context and a reliable baseline abundance estimate for this green
turtle population. We are confident that future studies integrating our LEK-derived
estimates with current scientific monitoring data from both foraging habitats and nesting
beaches will yield a holistic, long-term perspective of green turtle abundance, conservation,
and population dynamics in the eastern Pacific.

Beyond reconstructing green turtle abundance, our methodology may be exported to
parallel cases dealing with the conservation and monitoring of other long-lived species that
are fished as it can unravel complex phenomena by combining LEK and ecological
modeling. We provide a framework to overcome the challenges of documenting and
quantifying LEK, and bridge practical and epistemological gaps (Mistry & Berardi, 2016;
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Mukherjee et al., 2018). This approach provides a way to deal with variation in individual
memory using corroborated data and collectively produced knowledge, to simplify and
manage large volumes of qualitative information, and to translate qualitative data into a
format compatible with ecological modeling (Bélisle et al., 2018).

We recognize that of LEK and derived population abundance estimates are technically
and epistemologically distinct from data obtained under experimental conditions.
Nevertheless, they can provide a robust description of significant inflection points in
abundance trends that would be less-resolved if analyses were limited to scantly-available
technical data (Pauly, 1995; Sáenz-Arroyo & Revollo-Fernández, 2016). LEK-based and
integrative approaches can provide long-term information where scientific monitoring
data are scarce or unavailable, and contribute to collaborative knowledge production
(Barrios-Garrido et al., 2018; Lee et al., 2018; Mistry & Berardi, 2016). While our methods
are most readily adapted to marine fauna such as marine mammals, reptiles, teleost
fish, and long-lived invertebrates, this approach can also be modified and applied to
terrestrial and freshwater biota. We trust that future research that rigorously integrates
social and ecological science can help address challenges for conservation and
management in the context of global change and biodiversity loss (Mukherjee et al., 2018;
Sutherland et al., 2018).
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