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Abstract
Understanding the basic life history patterns of highly migratory species is important for effective management. For sea 
turtles, evidence of developmental biogeography and discrete life stage residency provides key information for understand-
ing resource use and population threats and defining conservation priorities. Resolving gaps in these knowledge areas is 
not straightforward, however. Inaccessible habitats, low survivorship, late maturity ages, and technology limitations all 
complicate monitoring individuals continuously throughout their life span. Here, we expand on previous studies and docu-
ment a near-complete tissue record in the ultimate posterior marginal scutes of hawksbill sea turtle (Eretmochelys imbricata) 
carapace. Stable isotope analysis (SIA) of ventral scute surfaces reveals differences between three geographically isolated 
populations in the Pacific and Atlantic basins. Additionally, sequential sampling and SIA along growth line contours of 
sectioned scutes reveals developmental movements. Perhaps surprisingly, no clear or general patterns emerge. Bivariate 
isotope data (stable carbon, δ13C, and nitrogen δ15N) indicate that only one of six Central Pacific hawksbills showed a distinct 
ontogenetic shift. And while all three Western Pacific individuals showed evidence of ontogenetic shifts, these individuals 
had three unique patterns. We summarize regional stable isotope values for common hawksbill foraging items, discuss driv-
ers of regional nitrogen structure, and make recommendations for future study.
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Introduction

Stable isotope analysis (SIA) is a relatively low-cost diag-
nostic tool for inferring individual-based ecological infor-
mation from marine consumers. Isotopic compositions of 
animal tissues integrate ecosystem and foraging informa-
tion (Deniro and Epstein 1981; Popp et al. 2007), and thus, 
when an animal moves among geographically discrete food 
webs, the stable isotope values of its tissues reflect these 
habitat shifts (Reich et al. 2007; Hobson and Wassenaar 
2008; Ramirez et al. 2015). Known as stable isotope track-
ing, this method carries some advantages over traditional 
population monitoring via mark-recapture or biotelemetry. 
One, SIA does not require an initial marking of individuals 
to obtain subsequent data, but rather provides information 
on prior experiences and behavior. Two, if the sampled 
tissues provide a developed chronology, then SIA may pro-
vide a time series and not simply a snapshot of ecological 
information (Becker et al. 1991; Grottoli and Eakin 2007; 
Trueman et al. 2012). Three, unlike most biotelemetry 
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studies that focus on geographic locations, SIA also has 
the potential to reveal foraging niche and trophic position 
(Seminoff et al. 2012; Clyde-Brockway et al. 2022). Four, 
SIA and other diagnostic tools can be applied to both liv-
ing organisms and dead tissues, and therefore may incor-
porate samples from natural history archives to expand 
datasets and derive novel historical records (Gagné et al. 
2018b; Miller et al. 2020; Smith et al. 2021).

As distinct isotopic patterns have been described across 
marine regions (“isoscapes”), stable isotope tracking has 
been broadly applied to understand the life history of sea 
turtles. Researchers have analyzed soft high-turnover 
tissues like skin and blood (Seminoff et al. 2006, 2012; 
Wedemeyer-Strombel et al. 2021; Clyde-Brockway et al. 
2022), as well as hard tissues with sequential layering like 
scute and bone (Reich et al. 2007; Avens et al. 2013; Van 
Houtan et al. 2016a; Turner Tomaszewicz et al. 2017). 
When time-specific growth layers in these hard tissues are 
serially sampled, researchers can measure isotope values 
across an organism’s distinct life stages. Pioneering work 
by Reich et al. (2007) performed SIA of keratin plugs of 
old and new scute tissues from green turtles (Chelonia 
mydas) in the western North Atlantic to reveal a transi-
tion from oceanic to neritic habitats during early juvenile 
development. However, Reich et al. (2007) only sampled 
two points in each individual’s life history, and thus were 
unable to validate the duration of transition age of these 
discrete stages. SIA of scute plugs has since been con-
ducted on successive scute growth layers to study habitat 
use by green and hawksbill (Eretmochelys imbricata) sea 
turtles (Vander Zanden et al. 2013; Wedemeyer-Strombel 
et al. 2021), yet still lack the contiguous sampling neces-
sary for a more complete life history record.

SIA has also been examined in the growth layers of 
humerus bones from loggerhead (Caretta caretta), Kemp’s 
ridley (Lepidochelys kempii), green, and hawksbill turtles 
to document chronologies of habitat use (Avens et al. 2013, 
2020; Ramirez et al. 2015; Turner Tomaszewicz et al. 2017, 
2022). While these studies have provided new and important 
life history insights, one limitation of this approach is that 
complete life history records are frequently precluded by 
the loss of early growth layers due to inner bone resorption 
(Snover 2002; Van Houtan et al. 2014a); analogous to scute 
sloughing (Caine 1986; Palaniappan 2007). An ideal tissue 
for SIA chronology study in sea turtles would sequentially 
deposit layers, retain early life stage layers, and provide 
a full life record. Known as tortoiseshell in international 
trade (Donnelly 2008; Miller et al. 2019), the robust keratin 
deposits in hawksbill carapace scutes present a good candi-
date for study. Van Houtan et al. (2016a) advanced earlier 
studies of hawksbill carapace scutes (Tucker et al. 2001; 
Palaniappan 2007) by discovering a near-complete chronol-
ogy in the ultimate posterior marginal (PM) scutes from 

hawksbill carapaces, tabulating internal growth lines, and 
using bomb radiocarbon (δ14C) to estimate tissue age.

Here, we expand on previous approaches by examin-
ing SIA in the ventral surface of central scutes and internal 
layers of PMs in hawksbill turtles. We first source hawks-
bill scutes through a variety of pathways and institutional 
partnerships (see Methods) to obtain scutes from all demo-
graphic stages and spanning four marine regions. Then, 
we compare SIA results from the most recently deposited 
ventral surface keratin tissues to examine patterns across 
ontogeny within and between geographic regions. Next, 
we perform SIA on sequential scute growth layers for six 
hawksbills from Hawaii and three hawksbills from the West-
ern Pacific to reveal details from the cryptic early life history 
phase. Lastly, we collect stable isotope values and compile 
published records for common hawksbill forage items across 
the Pacific as a comparative reference.

Materials and methods

Specimen collection

We obtained hawksbill carapace samples from strandings, 
museum collections, and US federal repositories in accord-
ance with US Endangered Species Act guidelines (US Fish 
&Wildlife Service permit #TE-72088A-0). Originating insti-
tutions provided sample metadata including location of ori-
gin, date of death or receipt, morphometrics, and sex. Speci-
mens arrived in a variety of dispositions: whole organisms 
(frozen, taxidermized), whole carapaces (dried), and disin-
tegrated scutes. Strandings were from NOAA’s ongoing sea 
turtle stranding program at the Pacific Islands Fisheries Sci-
ence Center in Honolulu, Hawaii (see: Work et al. 2004; Van 
Houtan et al. 2010; Balazs et al. 2015; Brunson et al. 2022). 
The Bernice Pauahi Bishop Museum provided samples 
from their collections and the US Fish and Wildlife Service, 
Office of Law Enforcement (Clark R. Bavin National Fish 
and Wildlife Forensics Laboratory, and National Wildlife 
Property Repository) provided seized specimens. Hatchling 
scutes came from emerged or partially emerged, deceased 
hatchlings during nest excavations on Maui and Hawaii 
Islands in conjunction with nest monitoring programs (e.g., 
Seitz et al. 2012; Gaos et al. 2021). Table S1 provides more 
details and metadata on the hawksbill specimens.

Hawksbill forage item samples (macroinvertebrates and 
macroalgae) were derived from field surveys and stranded 
turtles and supplemented with additional data from the pub-
lished literature. Previous nearshore reef surveys collected 
macroalgae in the Main Hawaiian Islands (Van Houtan et al. 
2014b). We supplemented these collections with surveys of 
established hawksbills foraging sites on Oahu, Maui, and 
Hawaii islands in 2012–2014, and at Rose Atoll, American 
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Samoa in 2012. During necropsy, we obtained additional 
undigested forage specimens from the upper gastrointesti-
nal tract (i.e., esophagus) of two hawksbills from Kwajalein 
Atoll, Republic of the Marshall Islands. These turtles died 
from traumatic injuries in September 1992, were kept in a 
freezer, and necropsied in July 2012 following established 
protocols (Work 2000). Published studies provided further 
isotope values from additional hawksbill forage items col-
lected on Hawaii island in 2007–2008 (Graham 2009) and 
at Palmyra Atoll in 2008–2010 (Kelly 2012).

Specimen preparation and sample extraction

Following published methods (Van Houtan et al. 2016a; 
Miller et al. 2019), we prepared all hawksbill scute speci-
mens for imaging, microsampling and diagnostic analysis. 
We began by separating carapace and marginal scutes from 
their adjoining tissues through natural tissue degradation. 
This process enclosed carapaces in perforated heavyweight 
polypropylene bags and submerged them in seawater 
for < 7 days. Then, we removed surface algae, epibionts, 
debris, and cleaned scute surfaces with tap water and mild 
detergent. We rinsed the cleaned scutes first with deionized 
water, then with 90% EtOH and air-dried scutes in a fume 
hood for 24 h. Following previous studies (Dailer et al. 2010; 
Van Houtan et al. 2014b), we rinsed collected macroalgae in 
deionized water, patted samples dry with cloth towels, and 
placed them on aluminum foil in a drying oven at 60 °C until 
fully desiccated (24–48 h). We repeated this same proce-
dure for additional hawksbill forage items, separating forage 
items into discrete taxonomic groups.

We first sampled superficial scute surfaces as previous 
studies examined these tissue sections for patterns of growth 
(Tucker et al. 2001; Palaniappan 2007) and stable isotope 
content (Reich et al. 2007; Kelly 2012). Using central cara-
pace scutes from Hawaii, Caribbean, and American Samoa 
specimens, we examined the newest tissue deposits—the 
center of the ventral side of the scute that directly contacts 
the living epidermis (see below, also Palaniappan 2007)—to 
capture a snapshot of their most recent life history and eco-
system experience (Van Houtan et al. 2016a). With a scalpel, 
we scraped the exterior of ventral scute surfaces, moving 
perpendicular to the edge of a No. 21 blade (at < 0.5-mm 
depth) to create 5 mg of sample material. For hatchlings 
only, as this demographic has no pronounced scute chronol-
ogy, we shredded whole scutes using medical grade scis-
sors (Excelta® #364, 1.25” blade). Using a ceramic mortar 
and pestle, we further homogenized all extracted scute and 
forage item material into a fine powder storing all sample 
homogenate in 1.5-mL Nalgene™ cryogenic vials for isotope 
analysis.

Seeking a more complete life history record, we sup-
plemented these ventral scute surface samples by revealing 

and sampling sequential growth layers within PM scutes, 
derived from Western Pacific and Hawaii specimens. Fol-
lowing Van Houtan et al. (2016a), we used a low speed 
precision cutter (Buehler Isomet™, No. 11–1280-170) with 
diamond wafering blades (Buehler 15HC, No. 11–4244) 
to make 1.5-mm-thick sagittal cross sections in ultimate 
PM scutes. To reveal growth layers, we polished the cross-
sectioned wafers (Buehler ECOMET IIITM 800 Polisher, 
Mark V Laboratory® A/O lapping film) sequentially mov-
ing from coarse to finer lapping film. We imaged each 
polished PM cross section with a brightfield, phase con-
trast, and darkfield equipped microscope (scope: Olympus 
BX41™, camera: ImagingPlanet 20MPX ™, adapter: Olym-
pus U-TVO.5XC-3, firmware: IMT i-Solution Lite), using 
software (Adobe Photomerge®) to stitch a single composite 
image from multiple sub-field image frames (e.g., Fig. 2B). 
The variable illumination and contrast capabilities of this 
microscope were useful for identifying growth lines across 
variously melanized sections of scute keratin.

Following Van Houtan et al. (2016a), we counted the 
apparent growth lines on each PM composite image and 
extracted tissue samples with a Carpenter Microsystems 
CM2 microsampling system (Avens et al. 2013; Turner 
Tomaszewicz et al. 2017). Here, we drilled ~ 1-mm paths 
along PM growth contours (see Figs. 3 and 4), extract-
ing > 1.5  mg of keratin powder for each microsample, 
repeating this process to capture material representing dis-
tinct developmental stages in each PM. Further treatment of 
scute material for lipid extraction was not required due to 
low C:N ratios among samples (see below; Turner Tomasze-
wicz et al. 2015).

Isotope analysis and data visualization

We determined bulk δ13C and δ15N stable isotope composi-
tions using an in-line C-N analyzer coupled with an isotope 
ratio mass spectrometer (Finnigan ConFlo II/DeltaPlus). 
Approximately, 1.0 mg of each sample was loaded into 
sterilized tin capsules and analyzed by a continuous-flow 
isotope-ratio mass spectrometer at the Light Stable Isotope 
and Mass Spectrometry Laboratory at University of Florida 
(Gainesville, Florida, USA). We used a Costech ECS 4010 
elemental combustion system interfaced via a ConFlo III 
device (Finnigan MAT) to a DeltaPlus gas isotope-ratio 
mass spectrometer (Finnigan MAT). The elemental ana-
lyzer combusted samples in pure O2, resultant gases were 
reduced to N2 and CO2 and passed through a series of ther-
mal conductivity detectors and element traps to determine 
percent compositions. Besides isotopes, this method also 
provided bulk elemental composition (%) for carbon and 
nitrogen. Acetanilide (C8H9NO: 71.09% C; 10.36% N) was 
the calibrant. We sent a small subset of additional samples 
(n < 20) to the Biogeochemical Stable Isotope Facility at the 
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University of Hawaii, where similar analyses and procedures 
were followed.

We expressed sample stable isotope ratios relative to 
the isotope standard following conventional delta (δ) nota-
tion in parts per thousand (‰), using δ = ([Rsample/Rstandard] 
– 1)*(1000), where Rsample and Rstandard are the correspond-
ing ratios of heavy to light isotopes (e.g., 15N/14N) in the 
sample and standard, respectively. Rstandard for 13C was Baker 
Acetanilide (δ13C = − 10.4) calibrated monthly against the 
Peedee Belemnite limestone formation international stand-
ard. The Rstandard for 15N was IAEA N1 ammonium sulfate/
(NH4)2SO4 (δ15N = 0.4) calibrated monthly against atmos-
pheric N2 and USGS nitrogen standards. All analytical 
runs included known standards placed every 6–7 samples 
to calibrate against instrument drift. Hundreds of replicate 
assays of reference materials indicated measurement errors 
of 0.06‰ for carbon and 0.12‰ for N for this setup (e.g., 
Seminoff et al. 2006, 2012).

We generated a series of visualizations from the scute 
imaging and SIA data, with a few provisions. First, the Car-
ibbean hawksbill scutes alone were disintegrated from the 
original carapace with no accompanying demographic data. 
For these scutes, we previously (see Miller et al. 2019) esti-
mated the straight carapace length (“SCL”) of the turtle from 
which they originated from the area of individual scutes. 
Second, in plotting the stable isotope values from scute 
microsampling, we recognized that drilled transect paths 
always exceeded individual growth lines, and at times imper-
fectly followed growth line contours (range = 2–35 growth 
lines, mean = 6.1). As a result, we recorded the minimum 
and maximum growth line number of each transect drill 
path and plotted SIA results graphically against the median 
growth line.

Third, to compare isotope trajectories through develop-
ment between samples, we generated an ensemble model for 
δ13C and δ15N values across development. As we have no 
telemetry or genetics data to indicate these adjoining regions 
hold completely distinct populations (Gaos et al. 2020), we 
conservatively pooled data from all North Pacific turtles 
(Central and Western Pacific). The resulting ensemble is a 
locally weighted regression (Cleveland and Devlin 1988) 
of the average stable isotope values in each 10 growth line 
wide bin (lines 0–9, 10–19… 190–199, etc.) of the median 
microsampled position value. We use this not to make popu-
lation inferences, but only to illustrate a stage-specific stable 
isotope value reference. To augment sample sizes in each 
of these bins (range: 1–7 samples, mean 3.1 samples), we 
added the results from the previous ventral surface scrap-
ings from the Hawaii samples only. For these samples, the 
growth line number attributed to the sample was the maxi-
mum growth line number for that individual. [Here, growth 
lines were calculated and described in a previous study (Van 
Houtan et al. 2016a)] We excluded hatchling data as well as 

data originating from scutes from other ocean sub-basins 
from these ensemble models.

We previously aged turtles through a validated, bomb 
radiocarbon δ14C method or estimated age from a derived 
von Bertalanffy growth function (Van Houtan et al. 2016a). 
As the PM for one individual turtle was worn (see below), 
its early tissue record is absent, and its discernable count 
of growth lines (n = 110) is truncated. As a result, we esti-
mated its total growth line count (n = 200) from a derived 
length-to-growth-line model (Van Houtan et al. 2016a) and 
plot its isotope data beginning at the difference between that 
estimate and its documented count (e.g., 90).

Results

Sampling the ventral surfaces of central scutes does not 
indicate a clear stable isotope pattern throughout develop-
ment, though it suggests some regional structure. Figure 1 
plots the δ13C and δ15N values and bulk carbon and nitrogen 
content from scute surface samples from n = 106 hawksbills. 
Of these samples, 28 originated from Hawaii (4.0–88.7 cm 
SCL), 60 from Caribbean (38.5–84.3 cm SCL), and 18 from 
American Samoa (27.7–68.4 cm SCL). Scatter and density 
plots show somewhat clustered and normally distributed 
δ13C values (Fig. 1A, B, mean− 15.8 ± s.d. 1.32 ‰, 95% 
CI: − 18.3 to − 13.2 ‰), but simple linear regressions reveal 
no significant trends across development (F1,105 = 0.002, 
P = 0.97, adjusted R2 = -0.01). The δ15N plots (Fig. 1 C-D) 
indicate more spread in the N isotope data (10.0 ± 2.48 ‰, 
95% CI: 5.1–14.9 ‰). This is evidenced in the long tail 
toward heavier N isotopes (Fig. 1D) and as six American 
Samoa juveniles and two Hawaii adults are heavier than the 
95% CI for δ15N (Fig. 1C). Simple linear regression suggests 
significant δ15N changes over development (F1,105 = 4.73, 
P = 0.03); however, the model’s explanatory power is weak 
(adjusted R2 = 0.03). When regions were considered sepa-
rately, the δ13C (-16.1 ± 1.38 ‰) and δ15N (10.1 ± 2.29 ‰) 
values from Hawaii are consistent with the pooled results. 
The American Samoa (δ13C: − 16.9 ± 1.44 ‰; δ15N: 
13.7 ± 2.85 ‰) and Caribbean (δ13C: − 15.3 ± 0.95 ‰; 
δ15N: 8.8 ± 0.86 ‰) also overlap with the pooled results 
but show more δ15N structure. Figure 1E, F details the 
bulk elemental composition, with carbon = 48.9 ± 1.37%, 
N = 14.7 ± 0.63%, and the remaining 36.4% arising from 
H, O, S, and other elements. The C:N ratio for all ventral 
scute surface samples had a mean of 3.33 ± 0.08 sd. Table S1 
provides further details on sample metadata. As the SCL 
domains differ between regional sample groups, we cannot 
rigorously model population differences in stable isotopes. 
However, the stable isotope values from these surface sam-
ples show no clear developmental trends.
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Figure 2 illustrates the general structure that ultimate 
PM scutes capture growth continuously throughout devel-
opment, and potentially contain a near-complete life history 
record. Figure 2A locates the left ultimate PM scute on a 
dry-archived, juvenile hawksbill carapace, and the ventral 
surface regions sampled (white dashed line rectangle). When 

sectioned sagittally and polished, these PM scutes reveal 
internal incremental growth layers (Fig. 2B). Parallel growth 
layers occur on either side of the central suture line, where 
the dorsal carapace and ventral plastron fuse. Here in this 
44.2-cm SCL juvenile, the PM contained 50 growth lines. 
Bomb radiocarbon techniques aged this turtle at 6.8 years, 
suggesting it deposited an average of seven growth lines 
annually (Van Houtan et al. 2016a).

Continuous sampling of δ13C and δ15N values through-
out the life history of six Hawaii hawksbill turtles reveals 
individual life histories, but no consistent pattern (Fig. 3). 
Only one turtle shows a clear ontogenetic shift indicated 
by abrupt coincident changes in the δ13C and δ15N values 
between the early and late growth lines sampled (Fig. 3F). 
Here, δ13C values decrease from growth lines 0–60 and 
then flatten out near -16 ‰ δ13C. By contrast, δ15N val-
ues increase through development, jumping from near 6 
‰ to near 15 ‰ δ15N between growth lines 40 to 60. 
When the bivariate isotope data for this turtle is plotted 
(δ15N plotted against δ13C), a dramatic dietary (and/or 
habitat) shift is apparent (highlighted by the orange arrow, 
Fig. 3F). This pattern suggests a discrete biogeographi-
cal and developmental phase shift, perhaps being an early 
life history shift from pelagic to neritic ecosystems (Reich 
et al. 2007; Bjorndal and Bolten 2010). The remaining 
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five turtles reveal more subtle patterns and suggest no dis-
tinct developmental biogeography. Figure 3A, E shows a 
slight decrease in δ13C values in growth lines 0–40, but the 
accompanying δ15N values are either absent or constant. 
Two turtles (Fig. 3B, C) show a gradual enrichment in 
δ13C in growth lines 0–80 but reveal no significant δ15N 
patterns. The last turtle (Fig. 3D) abraded its early life his-
tory tissue, so this record is lost, but has remarkably con-
stant δ13C and δ15N values throughout. Figure 3G shows 
the geographic origins of the samples in the Main Hawai-
ian Islands, unless unknown (Fig. 3E). Though the 13C 
Suess effect is seemingly strongest in the surface waters 
of the North Pacific (Eide et al. 2017), it seems an unlikely 
influence to these patterns as we observe no consistent 
δ13C trend, and its magnitude is weak (< 0.02 ‰ yr−1) to 
our observed changes (Fig. 3).

Continuous PM microsampling of stable isotope values 
for three Western Pacific hawksbills suggests ontogenetic 
shifts across isotopically distinct areas might be more com-
mon in this region (Fig. 4). Despite a lack of adult tissues 
(these juveniles measured 42–50 cm SCL, estimated at 
5–7 years old), each turtle shows some evidence of a distinct 
developmental shift. Here, individual isotope biplots of δ13C 
against δ15N are particularly revealing with each showing 
two clusters of data points. Though these isotope data sug-
gest developmental changes to diet and ecosystem through 
development, they do not record the same pattern across tur-
tles. The isotope data clusters reveal dramatic δ13C increases 
with gradual δ15N increases (Fig. 4A), gradual δ13C declines 
with dramatic δ15N declines (Fig. 4B), and notable δ13C 
increases with similar δ15N declines (Fig. 4C). Like the 
Hawaii hawksbills in Fig. 3, there is no clear agreement in 
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ous study (Van Houtan et  al. 2016a), and filled circles are from the 
current study. Black lines interpolate values, are a LOESS when mul-
tiple data sources are available, and gray line is the ensemble aver-
age for all individuals (Figs.  3–4). From left to right A–C, E–F or 
top to bottom D, drill line paths follow the chronology of maturation. 
Juvenile tissue in one turtle D is missing from abrasion. G Map of 

the Hawaiian archipelago locates each turtle’s stranding site (E is 
unknown). There is no single pattern in either C or N isotopes across 
development envisioned in either single or dual variable plots. F 
Demonstrates a discrete habitat shift (orange arrow), reflected in δ13C 
and δ15N values, perhaps due to nearshore settlement. Gradual shifts 
in δ13C values A–B, E and E also indicate potential habitat shifts. 
Scale bars near each PM cross section are 5 mm. Asterisk (*) indi-
cates turtle age estimated with a Von Bertalanffy growth function (see 
Methods)
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overall pattern. Figure 4D shows the geographic origin of 
these turtles in Palau and the Marshall Islands, and origin of 
some of the forage samples in Fig. 5.

Though non-exhaustive, Fig. 5 summarizes available 
bulk stable isotope values of typical hawksbill forage items 
from four Pacific Ocean regions. The data comprise 89 sam-
ples from 36 morphospecies representing five major forage 
groups: sponges, other macroinvertebrates, red algae, green 
algae, and brown algae. Hawksbills are omnivores, and 
while this dataset is not exhaustive, it represents all known 
forage groups for hawksbills in this region (Graham 2009). 
Based on the limited data from these samples, the isotope 
biplot reveals some apparent structure of hawksbill forage 
items between Pacific regions. This is particularly true for 
δ15N values. The macroinvertebrates and sponges of Pal-
myra Atoll (δ15N > 9 ‰), for example, have mean δ15N 
values almost twice that of the same groups in the Main 
Hawaiian Islands (δ15N < 5 ‰). The macroinvertebrates and 
sponges sampled from Kwajalein Atoll are between the two 
extremes with mean δ15N values near 7 ‰. Across locations 

and forage groups, δ13C values are highly variable by com-
parison with δ15N values. The limited representation of only 
green algae from Rose Atoll shows high variability in both 
δ13C and δ15N values. Tables S2 provides more details on 
these forage items, including species and samples sizes.

Discussion

Given their critical conservation status and ongoing exploi-
tation (Mortimer and Donnelly 2008; Miller et al. 2019), 
understanding the spatial population structure of hawksbill 
turtles is important for developing effective management 
strategies (Monzón-Argüello et al. 2010; Wallace et al. 2010; 
Seminoff et al. 2015). This may require a dedicated endeavor 
for hawksbills; however, as their omnivorous and variable 
life history traits defy simple characterization both within 
and among geographic regions. For example, unlike other 
sea turtle species, satellite telemetry (Hawkes et al. 2012; 
Marcovaldi et al. 2012; Walcott et al. 2012) and fishery 

Results from this study
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Fig. 4   Stable isotope values from scute growth contours of Western 
Pacific hawksbills. Though the turtles from A Palau and B, C Kwaja-
lein Atoll are all relatively immature, stable isotopes document poten-
tial shifts in both habitat and forage. Symbology retained from Fig. 3, 
and scale bars near each PM cross section remain 5  mm. Asterisk. 
Asterisk (*) indicates age estimated using measured length and previ-

ously derived VBGF parameters (Van Houtan et al. 2016a) as we had 
no date metadata for this specimen. Stranding dates of B, C allow us 
to estimate birth year; A has no stranding date. Orange arrows indi-
cate an apparent habitat and dietary shift. D Map of the central and 
Western Pacific with all sample collection regions noted
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bycatch data (Van Houtan et al. 2016b) reveal no clear spa-
tial population structure for hawksbills. Furthermore, exist-
ing population sampling data indicate that much remains 
cryptic about hawksbill life history and habitat use (Gaos 
et al. 2012; Liles et al. 2015). Stable isotope analysis of 
preserved tissues is an established technique that has dem-
onstrated promise to help resolve the developmental bioge-
ography of hawksbill populations.

Progress here has been limited as the current knowledge 
of hawksbill tissue stable isotope values is largely restricted 
to the Neotropics. Early, limited analysis of homogenized 
outer scute layers from two Florida and two Bahamas hawks-
bills had mean δ15N of ~ 5.5 ‰ and δ13C of  ~   − 17 ‰ 
(Reich et al. 2007), providing the first insights into hawks-
bill scute stable isotopes in those ocean regions. Compar-
ing distinct developmental stages of scute growth layers in 
nesting females from the Lesser Antilles, Fireman (2021) 
found “high variability” in stable isotope values (mean: 
δ15N = 8.9 ± 2.0 ‰, δ13C = − 18.4 ± 1.3 ‰) of all individu-
als sampled, but clear evidence of ontogenetic shifts in just 
four of 50 individuals sampled (8%). Whole blood and skin 
biopsy analysis from juvenile hawksbills in the eastern tropi-
cal Pacific of Costa Rica showed a broad δ13C niche (range: 
− 19 to − 13 ‰) by comparison to δ15N (range: 12 to ~ 14 

‰) (Clyde-Brockway et al. 2022). Biopsy samples of four 
scute growth layers in juvenile and sub-adult hawksbills in 
the eastern tropical Pacific of Nicaragua and El Salvador 
found a general δ13C depletion as turtles matured (range: -27 
to -17 ‰) (Wedemeyer-Strombel et al. 2021). Longitudinal 
skeletal sampling of hawksbills in Pacific of El Salvador 
showed a consistent decline through development of δ13C 
(from − 15 to  − 24 ‰) and δ15N (from ~ 14 to ~ 11 ‰), 
which researchers attributed to an oceanic to nearshore habi-
tat shift (Turner Tomaszewicz et al. 2022).

A primary aim of this study was to provide novel sam-
pling methods to describe the contiguous isotope life his-
tory of hawksbills. We first demonstrated that sampling the 
ventral surface of scutes detects no clear isotope patterns 
across development from hatchlings to breeding females 
(Fig. 1). Like skin or blood samples, surface scute sam-
ples summarize a life history record that is both recent and 
brief. Analogous to tree rings (Schweingruber 2012) and 
fish otoliths (Pannella 1971), cross-sectioned and polished 
PM scutes reveal a near-complete life-history record (Fig. 2) 
with potential to yield new insights into age, diet, and move-
ments (Van Houtan et al. 2016a). For Hawaiian hawksbills, 
one of six turtles (17%) has clear evidence of an ontogenetic 
shift (Fig. 3). This result corroborates a previous analysis of 
bycatch, strandings, and opportunistic observation data that 
Hawaiian hawksbills aged 0–4 years likely remain in the 
region’s coastal waters (Van Houtan et al. 2016b). The pro-
portion of ontogenetic shifts in Hawaii is also consistent with 
what has been inferred from isotopes from hawksbills from 
the Lesser Antilles (Fireman 2021), but is significantly less 
than the eastern tropical Pacific populations (Wedemeyer-
Strombel et al. 2021; Turner Tomaszewicz et al. 2022). 
The longitudinal trends in stable carbon values of Hawaiian 
hawksbills are inconsistent, containing both patterns of 13C 
enrichment and depletion through development (Fig. 3). By 
contrast to the Hawaii specimens, all three Western Pacific 
turtles show a clear ontogenetic shift. However, their isotope 
biplots reveal three different patterns and no single habitat-
use type (see orange arrows in Fig. 4A–C). By comparison 
to Hawaiian hawksbills, together this suggests that the early 
development phase of Western Pacific hawksbills may have 
less association with nearshore waters. While such sequen-
tial and repeated sampling within individual tissues holds 
promise, especially as a complement to other sampling tech-
niques, the present analysis represents a small sample and 
should be expanded.

A second goal of the present analysis was providing 
new stable isotope information for Central, Western, and 
South Pacific hawksbills. In this respect, our results add to 
the growing body of evidence that hawksbill tissue isotopes 
vary regionally between populations. Figure 1 presents novel 
data that demonstrate broad δ15N structure in scutes from 
Caribbean, Central Pacific, and South Pacific populations. 
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These δ15N values are consistent with the isotope values 
of the regional forage items we report here (Fig. 5), with 
previously published isotopes of Caribbean hawksbill scutes 
(Reich et al. 2007; Fireman 2021) and published values of 
other reef taxa in these regions (CocheretdelaMorinière et al. 
2003; Fiore et al. 2013). While this alignment is encouraging 
for developing applied isoscapes, there remains a substan-
tial need to document site-specific dietary composition and 
forage characteristics across hawksbill populations. Though 
recent studies present important additions to this literature 
(Méndez-Salgado et al. 2020; Clyde-Brockway et al. 2022; 
Turner Tomaszewicz et al. 2022), most geographic regions 
are persistently data poor, limiting ecological knowledge 
and conservation planning. Future studies may therefore 
expand ecological monitoring efforts to increase data col-
lection on the habitat use and foraging ecology of hawks-
bills as well as the diagnostic analysis of their forage items. 
Of note, the regional δ15N patterns that we describe here 
(Fig. 1C, D) from hawksbill scutes parallel the differences in 
seabird trophic position from the same marine regions (see 
Fig. S1) which were correlated with anthropogenic impacts 
(Gagné et al. 2018a). As δ15N patterns of consumers are 
derived from 15N values at the food web base, future work 
may investigate whether regional values are fixed in time or 
whether they are impacted by anthropogenic pressures such 
as overfishing and climatic change.

To help fill existing data gaps, here we summarized avail-
able stable isotope values for common hawksbill forage 
items in the Central, South, and Western Pacific (Fig. 5). 
As these forage data are not exhaustive, we are prevented 
from running a formal mixing model (Lemons et al. 2011; 
Stock and Semmens 2016; Gagné et al. 2018b; Stock et al. 
2018), and cannot infer diets or dietary shifts through devel-
opment for individuals in the present study. From the data 
we possess, however, one thing may be clear. The sampled 
forage items from Hawaii are considered relatively exhaus-
tive (41 samples from 21 species across 5 forage groups, 
see Table S2), have δ15N values ranging from 2–5 ‰, yet 
are somehow lacking the full complement of hawksbill prey 
species. While the mean δ15N values across development 
for Hawaiian hawksbills in Fig. 3 is ≥ 9 ‰, two adult tur-
tles (Fig. 3C, F) have δ15N values that exceed 15 ‰. Given 
that published sea turtle tissue δ15N discrimination values 
are ≤ 4.0 ‰ (Seminoff et al. 2006; Vander Zanden et al. 
2012), these two adults likely consumed forage items not 
displayed in Fig. 5. A possible explanation is that these indi-
viduals recently migrated from another region where they 
consumed forage more enriched in δ15N. However, this is 
unlikely given the isolation of the Hawaiian archipelago, 
and that none of the foraging items for any Pacific regions in 
Fig. 5 can support such high tissue δ15N values. Since these 
turtles both stranded in the 1980s, these turtles may have 
foraged on high-trophic level species that no longer occur 

in such abundance, or this may be reflecting that food web 
compression has occurred in recent decades in Hawaii’s reef 
ecosystems. Another explanation is that these individuals 
foraged in impaired watersheds with high N footprints (e.g., 
Van Houtan et al. 2010). This explanation may be unlikely, 
however, as eutrophication has increased over time, yet ele-
vated δ15N tissue values were observed in hawksbills dec-
ades ago and not recently.

Resolving individual life histories though the longitudinal 
analysis of hawksbill scutes is promising, but substantial 
work remains. In this study, we expand on earlier pioneer-
ing research that first demonstrated successional layering in 
hawksbill scutes (Tucker et al. 2001; Palaniappan 2007), and 
later documented a near-complete chronology in the ultimate 
PM scutes (Van Houtan et al. 2016a). Using the same tis-
sues and preparations, here we sequentially sampled along 
scute growth line contours and performed SIA to understand 
individual life histories and regional population structure. 
As we have shown, especially when combined with other 
traditional and diagnostic tools, such methods can reveal 
previously unknown information with important conserva-
tion applications. Moving forward, future progress can be 
made in several distinct ways.

The novel sclerochronology methods we developed 
here can be applied universally to reconstruct the long-
term habitat use of individual hawksbill turtles in any geo-
graphic region. We recommend expanding the approach to 
increase both the samples and populations analyzed here. 
This might prioritize data poor regions of the South Atlan-
tic, Indian, West Pacific and South Pacific basins as well 
as the Eastern Pacific and the Northwest Atlantic. We also 
recommend refining our techniques with ultimate PM scutes, 
comparing it with other scute tissues, and further aligning 
it with growth line and ageing studies (e.g., Van Houtan 
et al. 2016a). As it was here, partnerships with museums, 
natural history repositories, law enforcement agencies, and 
stranding programs may be important to obtain specimens 
as well as to demonstrate additional applied contexts for 
such isotopic research (Espinoza et al. 2007). In addition 
to replicating and refining this work, we recommend sup-
plementing the existing mass spectrometry diagnostics of 
carbon and nitrogen to additional elements. As Fig. 1E, F 
demonstrates, 36% of scute tissues are composed of H, O, 
S, and other trace elements. Although H and O can display 
low variability between regions, δD, δ18O, and δ34S have 
demonstrated use in marine systems (Cardona et al. 2009; 
Clark and Fritz 2013; Tucker et al. 2014; Duarte et al. 2018; 
Miller et al. 2019) and may be useful for sea turtle popula-
tions. Together, these programs will allow for the develop-
ment of robust mixing models, advance our understanding 
of individual life histories, and increase the effectiveness of 
conservation management for critically endangered hawks-
bill turtles.
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