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Abstract
Age is a fundamental life history attribute that is used to understand the dynamics 
of wild animal populations. Unfortunately, most animals do not have a practical or 
nonlethal method to determine age. This makes it difficult for wildlife managers to 
carry out population assessments, particularly for elusive and long- lived fauna such 
as marine turtles. In this study, we present an epigenetic clock that predicts the age 
of marine turtles from skin biopsies. The model was developed and validated using 
DNA from known- age green turtles (Chelonia mydas) from two captive populations, 
and mark- recapture wild turtles with known time intervals between captures. Our 
method, based on DNA methylation levels at 18 CpG sites, was highly accurate with a 
median absolute error of 2.1 years (4.7% of maximum age in data set). This is the first 
epigenetic clock developed for a reptile and illustrates their broad applicability across 
a broad variety of vertebrate species. It has the potential to transform marine turtle 
management through a nonlethal and inexpensive method to provide key life history 
information.
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1  |  INTRODUC TION

DNA methylation has been used to predict age in a wide range of 
mammals, fish, and birds (De Paoli- Iseppi et al., 2017). These studies 
develop what are referred to as “epigenetic clocks”, where specific 
CpG sites can be used collectively to predict age from DNA methyla-
tion levels. DNA methylation is one of the main epigenetic modifica-
tions involved in regulating gene expression. Genes found in regions 
with more methylated DNA recruit proteins such as histones, and 
modify chromatin structure, leading to reduced expression (Moore 
et al., 2013).

In vertebrates, the most common form of DNA methylation is 
the addition of a methyl group to cytosine residues within cytosine- 
phosphate- guanine (CpG) sites (Bird, 1993). DNA methylation has 
been shown to be predictive of age in a range of somatic tissues 
in humans and mice (Horvath, 2013; Stubbs et al., 2017). This is 
ideal in a wildlife management setting as it can potentially be used 
as a nonlethal method to predict age. However, epigenetic clocks 
are currently not available for every species. DNA sequencing for 
measuring methylation levels has become cost effective and high 
throughput, making monitoring of wild animal populations with 
epigenetic clocks a realistic proposition (Heather & Chain, 2016; 
Li et al., 2019). However, epigenetic clocks do have their limita-
tions and can be confounded by other factors. For example, sex 
can potentially confound analyses which is why studies either re-
move the sex chromosomes from the analysis or have an equal sex 
ratio (Horvath, 2013; Stubbs et al., 2017; Thompson et al., 2017). 
It is also important to note other factors such as population and 
environmental factors can influence DNA methylation and may im-
pact age- specific models (Nilsen et al., 2016; Parrott et al., 2014; 
Polanowski et al., 2014).

Marine turtles are iconic, globally distributed large reptiles that 
traverse vast distances in the ocean. This lengthy and largely mari-
time life history makes it difficult to characterise marine turtle pop-
ulation demography and dynamics. This is significant since all marine 
turtle species are currently considered vulnerable or endangered 
(Mazaris et al., 2017). Methods such as mark- recapture are widely 
employed for marine turtles to estimate survival probabilities, abun-
dance, and dispersal behaviour. However, key life history attributes, 

including age and growth rates remain difficult to determine (Casale 
et al., 2007; Hoenig, 1983).

Practical and nonlethal methods for age prediction do not exist 
for marine turtles. Skeletochronology can only be carried out on a 
deceased individual and therefore is unlikely a practical method for 
wildlife management (Avens & Snover, 2013; Guarino et al., 2004; 
Snover, 2002; Tomaszewicz et al., 2015). A nonlethal and practical 
method for age prediction of marine turtles would enable better 
understanding of their population dynamics, including population 
growth rates, survival probabilities, mortality rates, and life expec-
tancies (Caughley, 1966; Cole, 1954; Müller et al., 2004). Estimates 
of these population characteristics would allow overall risk of ex-
tinction for these iconic organisms to be assessed more accurately. 
In this study, we present an epigenetic clock for marine turtles. The 
epigenetic clock was developed and validated using skin biopsies 
collected from known age green turtles (Chelonia mydas) but re-
stricted to CpG sites conserved among all marine turtles. By restrict-
ing the epigenetic clock to CpG sites common to all marine turtles, 
the method can later be adapted to other marine turtles through 
validation with known age individuals.

2  |  MATERIAL S AND METHODS

2.1  |  Known age marine turtle data set

Skin biopsy samples from 63 green turtles of known age (range 1– 
43.8 years) were collected from the Cayman Islands and Kélonia, 
Réunion (Table 1). Sample collection of Cayman Island turtle skin bi-
opsies was approved by Cayman Islands Department of Agriculture 
Animal Welfare & Control. These samples are from captive animals 
and therefore age is known. Skin biopsies from Kélonia, Réunion were 
conducted under permits from Kélonia, Réunion Island Prefecture 
and Department of the Environment (09- 1405/SG/DRCTCV; DA 
2017- 01). These turtles too were captive and have originated from 
wild populations. In addition to known age samples, biopsies were 
collected from two wild turtles during a mark- recapture investiga-
tions at Ningaloo, Western Australia, providing two paired sam-
ples of known time intervals. These samples were collected under 

TA B L E  1  Sample sizes by locations of turtle skin biopsies used for reduced representation bisulphite sequencing. Carapace lengths and 
widths for individual turtles are provided in Table S1

Sample origin Species and total samples Age range (years) Sex distribution

Cayman Turtle Centre, Cayman Islands Green turtle: 51 1– 43 Female: 31
Male: 10
Unknown: 10

Turtle observatory, Kélonia, Réunion, France Green turtle: 12 1– 34 Male: 2
Unknown: 10

Western Australia mix origins, Australia Flatback turtle: 1
Hawksbill turtle: 1
Leatherback turtle: 1
Loggerhead turtle: 1
Olive Ridley turtle: 1

NA Unknown: 5
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permits from the Department of Biodiversity, Conservation and 
Attractions (U10/2020- 2022) and the CSIRO Large Animal Ethics 
Committee (AEC: 14- 07).

In addition, one skin biopsy from each of the following spe-
cies was included in the data set: flatback turtle (Natator depres-
sus), hawksbill turtle (Eretmochelys imbricata), leatherback turtle 
(Dermochelys coriacea), loggerhead turtle (Caretta caretta), and olive 
ridley turtle (Lepidochelys olivacea). The collection of these samples 
was approved by Western Australia's Department of Biodiversity, 
Conservation and Attractions (U10/2020- 2022). One sample from 
each species was used to identify CpG sites that are present in all 
marine turtle species to develop a future universal epigenetic clock 
for marine turtles. The purpose of this approach was that transfer-
ring the model to other marine turtle species will be possible when 
samples from sufficient known- age individuals become available. 
We therefore provide an epigenetic clock with CpG sites common 
to all marine turtles.

2.2  |  Reduced representation 
bisulphite sequencing

The DNA from all samples was extracted using the DNeasy Blood 
and Tissue Kit (Qiagen) as instructed in the manufacturer's proto-
col. A total of 72 marine turtle skin biopsy samples were used for 
reduced representation bisulphite sequencing (RRBS; Table 1). 
RRBS libraries were prepared using MspI digestion as previously 
described (Smallwood et al., 2011). Bisulphite conversion efficiency 
was determined by using the spiked unmethylated Lambda DNA 
(Promega, cat no. D1521). This DNA is unmethylated and therefore 
all CpG sites should be converted. RRBS data was aligned (GenBank: 
J02459) and the level of methylation was determined the same as 
described in the next section. The Ovation RRBS Methyl- Seq sys-
tem from NuGEN was used to construct the libraries. Libraries were 
sequenced on an Illumina NovaSeq with 100 bp single- end 200 cy-
cling at the Australian Genome Research Facility (AGRF). The raw 
demultiplexed RRBS sequencing reads are provided online on the 
CSIRO data access portal at: https://data.csiro.au/colle ction s/colle 
ction/ CIcsi ro:49784v1

2.3  |  Sequencing data analysis

Demultiplexed fastq files were quality checked using FastQC ver-
sion 0.11.8 (https://www.bioin forma tics.babra ham.ac.uk/proje cts/
fastq c/) and were trimmed using trimmomatic version 0.38 with a slid-
ing window of 4– 15 bp and a minimum read length of 36 bp (Bolger 
et al., 2014). Trimmed reads were aligned using BS- Seeker2 version 
2.0.3 with default settings and bowtie2 version 2.3.4 to the green tur-
tle genome from NCBI (assembly: rCheMyd1.pri) (Guo et al., 2013; 
Langmead & Salzberg, 2012; Rhie et al., 2020; Wang et al., 2013). 
BS- Seeker2’s methylation module was used with default settings 

for methylation calling. DNA methylation calling returns values as 
a percentage (methylated reads/total reads). CpG sites with a mean 
inadequate coverage of <2 reads or a clustering of >100 reads was 
removed from downstream analysis as previously described (Stubbs 
et al., 2017). CpG sites with methylation levels in 90% of samples 
(482,578 CpG sites) were used for downstream analyses.

2.4  |  Universal marine turtle epigenetic clock

CpG sites that were captured in all species and had adequate cov-
erage, as described above, were included in model generation. The 
genomic locations of these sites were identified by BS- Seeker2’s 
methylation module. Green turtle samples of known age were ran-
domly assigned (Table S1) to either a training data set (46 samples), 
or a testing data set (17 samples) and was split evenly as much as 
possible by sex and age using the createDataPartition function in 
the caret R package (Kuhn, 2008). Age was transformed to a natu-
ral log to fit a linear model. Using an elastic net regression model, 
the age of the turtles was regressed over the percentage of meth-
ylation of CpG sites. The glmnet function in the glmnet R pack-
age was used to apply the elastic net regression model (Friedman 
et al., 2010). An elastic net regression model is a common method 
to identify the best predictors of age from a large data set of poten-
tial candidates (Horvath, 2013; Mayne, Korbie, et al., 2020; Stubbs 
et al., 2017; Thompson et al., 2017). It is best suited for high di-
mensional data with few samples (Friedman et al., 2010). This is the 
case with genomic data sets including DNA methylation data sets 
which have more CpG sites than samples. The glmnet function was 
set to a 10- fold cross validation and an α- parameter of 0.5 (optimal 
between a ridge and lasso model). The performance of the model 
was assessed using Pearson correlations, absolute error, and rela-
tive error rates. All statistical analyses were carried out in R version 
4.0.4 (R Core Team, 2013).

2.5  |  Testing for differences in epigenetic age error 
between populations and sexes

Population and sex could not be considered as factors in the model as 
has been done in a previous epigenetic clock (Anastasiadi & Piferrer, 
2020). Sex is difficult to determine in turtles for younger ages and 
only two populations are represented in this study. However, we 
did test if the model was biased towards a sex or population once 
it was developed. To test for differences in absolute error rate be-
tween samples of different populations and sex we used a one- way 
ANOVA. Since the age of the samples were not evenly distributed 
across location and sex, age was used as a blocking factor. A block-
ing factor is used to account for other factors and reducing known 
sources of variability for more sensitive analyses. By doing so this 
reduces the bias of age prediction error be attributed to source 
population.
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2.6  |  Development of a multiplex PCR assay

The human and mammalian epigenetic clocks use the Illumina 
methylation arrays, and on a large scale are cost- effective but 
do not exist for nonmammalian species (Horvath, 2013; Lu et al., 
2021). Some studies have used RRBS to develop an epigenetic 
clock (Stubbs et al., 2017; Thompson et al., 2017). Although these 
studies have produced accurate models, RRBS is expensive and is 
therefore not practical for direct application in most wildlife man-
agement studies. RRBS is expensive because it captures a large 
part of the genome, but epigenetic clocks only require a selected 
number of CpG sites. The motivation in this study was to make a 
cost- effective epigenetic clock for marine turtles. This would be 
carried out by using multiplex PCR; a high- throughput method that 
targets small amplicons (fragments of DNA) for DNA sequencing. 
The initial motivation for RRBS was to identify the CpG sites that 
are predictors of age.

Known age samples, along with two pairs of samples from two indi-
viduals of a mark- recapture study were bisulphite treated (Supporting 
Information) using a modified version of a previous protocol (Clark 
et al., 2006). Human methylated and nonmethylated DNA (Zymo, 
Cat no. D5014) was used to assess the efficiency of the bisulphite 
treatment. This kit contains DNA known to be methylated and un-
methylated within the death- associated protein kinase gene (DAPK1, 
primers provided by the manufacturer). To test efficiency DNA from 
these controls was aligned to GenBank Accession no. NM_004938. 
The fully methylated DNA should have no conversion of cytosines 
whereas the unmethylated will have conversion to thymines.

Primers were designed using a 500 bp flanking region of the 
CpG sites identified from the elastic net regression model in the 
RRBS data (Table S2). PrimerSuite (www.prime r- suite.com) was used 
to design the primers and has been used previously for multiplex 
PCR of bisulphite converted DNA (Korbie et al., 2015; Lu et al., 
2017; Mayne, Espinoza, et al., 2021; Mayne, Korbie, et al., 2020). 
The parameters of PrimerSuite were 55°C annealing temperature, 
one assay pool, bisulphite converted DNA, and with the two fusion 
sequences (gacatggttctaca and cagagacttggtct). The cytosines are 
unmethylated in the primers. One target assay was chosen to reduce 
complexity in the laboratory and cost of running multiple pools. The 
fusion sequences were for barcoding with the Fluidigm 384 bar-
codes (Fluidigm cat no. 100– 4876).

The Primers were tested in singleplex reaction using the GoTaq 
Hot Start Polymerase (Promega, cat no. M8296). Annealing tem-
peratures ranging from 55– 60°C were tested, with 56°C found to 
produce the strongest band for both singleplex and multiplex reac-
tions. PCR products were visualised on a 2% agarose gel. Barcoding 
of samples was carried with oligonucleotides with attached Illumina 
adaptors (Fluidigm, 100– 4876). Samples were pooled equally by vol-
ume. Sequencing was carried out on an Illumina MiSeq, 300 cycle, 
with 100× coverage to generate 400,000 reads per sample. Both 
multiplex and barcoding, master mixes, and cycling conditions are 
provided in Tables S3– S6.

Multiplex PCR sequencing data was hard clipped by 15 bp at 
both the 5’ and 3’ end to remove adaptor sequences with seqkit ver-
sion 1.2 (Shen et al., 2016). Reads were aligned to the green tur-
tle genome using Bismark version 0.20.0 with default parameters 
and bowtie2 as an aligner (Krueger & Andrews, 2011; Langmead & 
Salzberg, 2012). The methylation calling was done with the bismark_
methylation_extractor function which returned methylation values 
as a percentage. The model was recalibrated using the glmnet func-
tion with CpG sites maintained after the multiplex PCR design. The 
α- parameter was set to 0 in glment to force all sites to be used in the 
model. Here, the optimal sites had already been identified by RRBS 
and the model needed to be recalibrated with multiplex PCR data. 
The multiplex PCR data is publicly available at https://data.csiro.au/
colle ction/ csiro :53843

2.7  |  Principal component analysis

Principal component analysis (PCA) was carried with the data scale 
set to unit variance with the FactoMineR R package (Lê et al., 2008). 
PCAs were carried out on all DNA methylation percentages with all 
CpG sites and age associated CpG sites. This information is detailed 
in the relevant sections of the results.

3  |  RESULTS

3.1  |  Universal marine turtle age markers

On average, 45.3 million reads per RRBS sample were aligned to the 
green turtle genome with an alignment rate of 88.6%. Bisulphite 
conversion was found to be >99% as determined by spiked un-
methylated cl857 Sam7 Lambda DNA. This resulted in a total sum 
of 1,261,168 CpG sites with an average coverage of six reads per 
CpG site across all samples. Global methylation was 65.5%, lower 
than what is found in mammals (70%– 80%), but similar to the com-
mon snapping turtle (Chelydra serpentina) where two- thirds of CpG 
sites have a methylation >75%. (Li & Zhang, 2014; Ruhr et al., 2021). 
Global methylation did not significantly correlate with age (Pearson 
correlation = 0.10, p- value = .67). However, DNA methylation at 
8225 CpG sites exclusively in green turtles correlated with age (FDR 
< 0.05). A total of 844 CpG sites were common to all turtle species. 
The overlap of 844 CpG sites does not reflect evolutionary diver-
gence or sequence conservation but rather a reflection of the extent 
of the turtle genomes covered by sequencing. RRBS involves the 
fragmentation of DNA by restriction enzymes. Although all species 
had an alignment rate of >85% to the green turtle genome, the reads 
between species did not fully overlap. This is most probably due to 
genomic variation resulting in different cut site locations. Whole ge-
nome sequencing would be a better method to determine genome 
conservation. Of the 844 CpG sites, 51 were significantly correlated 
with age (FDR < 0.05).
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The elastic net regression model returns the minimum number of 
sites to predict age and was run with the 844 CpG sites common to 
all turtle species. The glmnet function returned a minimum λ- value 
of 0.1007724 based on the training data. The regression model re-
turned an optimal 29 CpG sites that are conserved in all marine tur-
tle species to predict age. These sites were found to be conserved 
by aligning reads from each species to the green turtle genome and 
using the BS- Seeker2 call methylation module. Using this model with 
29 CpG sites we detected a high correlation between the chronolog-
ical and predicted age (Figures S1A,B) in both the training (Pearson's 
correlation = 0.93, p- value < 2.20 × 10−16) and testing (Pearson's 
correlation = 0.90, p- value = 7.53 × 10−7) data sets. We also found 
a low median absolute error rate (MAE) of 2.57 years in the testing 
data set (Figure S1C). This translates to a relative error of 4.8% when 
compared to the maximum age in the data set, which is comparable 
to mammalian studies (4.2%– 8.5%) (Horvath, 2013; Stubbs et al., 
2017; Thompson et al., 2017). No statistical significance in absolute 
error rate was found between training and testing data sets (t test, 
two- tailed, p- value = 010).

We also performed the elastic net regression model using the 
age- associated 8225 CpG sites that were found in green turtles 
but not necessarily in other species. Here, we found a similar cor-
relation and MAE in the testing data set compared to the universal 
marine turtle clock (Pearson correlation = 0.93; MAE = 2.55 years). 
However, there was an increase to an optimum of 38 CpG sites for 
this specific green turtle epigenetic clock. Of the 38 CpG sites; 25 
were part of the 29 “universal marker” panel described above. Since 
there was little difference between age prediction models, we chose 
to focus on sites conserved in all marine turtle species. The increase 
from 29 to 38 CpG sites may potentially be contributed by the larger 
pool of CpG sites that was available to the elastic net regression 
algorithm (844 vs. 8225). We also found no difference in absolute 
error rates in location (Cayman Island compared to Réunion, one- 
way ANOVA, p- value = .97) and sex (one- way ANOVA, p- value 
=  .84). Multitissue and multispecies epigenetic clocks generally have 
more CpG sites than models with only working with single tissue 
or one species (Horvath, 2013; Lu et al., 2021). In this study, it may 
seem counterintuitive that the species- specific clock had more CpG 
sites. However, unlike other studies, the calibration data remained 
the same, but the pool of CpG sites for selection increased with 
green turtles only. One potential reason for the increase in CpG sites 
is that the model selected CpG sites that may be able to capture 
more subtle differences in methylation that may be better predictors 
of age. However, due to the lack of known age for other marine tur-
tle species, this cannot be determined. A PCA of the 8225 CpG sites 
shows that the samples separated by location (Figure S2).

3.2  |  Age- association of DNA methylation 
across the genome

Previous studies have shown that DNA methylation at any CpG site 
have some level of age- association (Mayne, Korbie, et al., 2020; 

Stubbs et al., 2017). We examined this with the elastic net regres-
sion model, where it was restricted to use 29 CpG sites randomly 
chosen throughout the genome. This was carried out 10,000 times 
and produced an average MAE of 10.0 years (Figure S3). This his-
togram shows that collectively some CpG sites chosen at random 
can be predictive of age. However, specific CpG sites are required to 
achieve the best performing model.

3.3  |  Multiplex PCR followed by sequencing

The motivation for employing multiplex PCR was to reduce cost and 
increase throughput for application in routine turtle monitoring. To 
reduce the complexity of the multiplex PCR assay, we sought to de-
sign an assay based on a single multiplex. However, the maximum 
multiplex size that met our selection criteria without producing high 
levels of primer dimer was 18 of the 29 CpG sites. Examples of single-
plex and multiplex reactions are provided in Figure S4. Two previous 
studies have shown it is still possible to generate precise and ac-
curate predictive models of age with fewer biomarkers than initially 
intended for the assay (Mayne, Espinoza, et al., 2021; Mayne, Korbie, 
et al., 2020). It is important to note a reference genome is required 
to obtain the flanking sequences to carry out primer design for mul-
tiplex PCR. Fortunately, the green sea turtle reference genome was 
available for this study. The 63 known age green turtle samples were 
subject to the multiplex PCR method (see Methods S1). On average, 
per sample, 421,000 reads (339,000– 449,000 reads) were aligned to 
the targeted amplicons with an alignment rate of 98.4%. Each ampli-
con had a mean coverage of 14,354 reads. No statistical difference 
was found with read coverage and absolute error rate in the test-
ing data set (Pearson's correlation = – 0.06, p- value = .6395). The 
model was retrained using the 18 CpG sites in the multiplex PCR 
assay (Table S7). The methylation at the 18 CpG sites were found 
to collectively separate the samples by age (Figure 1a). It should 
also be noted that the Kélonia, Réunion samples had a larger cohort 
of younger samples (<10 years, Table S1) than the Cayman Island 
samples. Despite this no difference was in absolute error rate was 
observed between locations (Cayman Island compared to Réunion, 
one- way ANOVA, p- value = .97). Methylation levels at six CpG sites 
positively correlated with age and 12 negatively correlated with age 
(Figure 1b and Table S7).

The multiplex PCR assay produced a similar performance as 
a predictor of chronological age as the RRBS in both the training 
(Pearson's correlation = 0.94, p- value <2.20 × 10−16) and test-
ing (Pearson's correlation = 0.91, p- value < 7.21 × 10−7) data sets 
(Figure 2a,b). No statistical difference was observed between the 
error rates of the training (MAE = 1.2 years) and testing (MAE = 
2.1 years) data sets (Figure 2c, p- value = .65, t test, two- tailed). The 
testing data set had a median relative error rate of 13.3%. No sta-
tistical significance was found with age and the relative error rate 
(Pearson's correlation = 0.02, p- value = .89), suggesting relative 
error rate is not associated with age (Table 2). The relatively low cor-
relation in the 10– 20 year old range may not be reflective of the true 
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F I G U R E  1  Distribution of samples by age associated CpG sites. (a) Principal component analysis of known age green turtles using the 18 
age associated CpG sites. Principal component 1 separates the samples by age. (b) Magnitude and directionality of the age associated CpG 
sites. The plot illustrates that DNA methylation is not unidirectional and some sites either become hypermethylated or hypomethylated with 
age
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TA B L E  2  The performance of the 
epigenetic clock at increasing age intervals 
in the testing data set. The absolute and 
relative error rates for each age range is 
reported as the median. Table S1 provides 
both chronological and epigenetic age for 
all the samples in this study
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performance of the model as it contains a high number of individuals 
at a similar age (16– 16.8 years, Table S1). A visual representation of 
the error rates in the testing data set at different age ranges is pro-
vided in Figure S5.

3.4  |  Longitudinal validation

We also tested the model on two wild unknown- aged recaptures of 
green turtles from Ningaloo, Western Australia. The first was recap-
tured 2.3 years after initial capture and the turtle age was predicted 
to be 19.1 and 21.4 years on its first and second capture, respec-
tively. The second was sampled 3.0 years apart and the turtle's age 
was estimated to be 11.7 and 16.3 years for its first and second cap-
tures, respectively.

4  |  DISCUSSION

Mammals have been the primary focus of the development of epige-
netic clocks (Lu et al., 2021; De Paoli- Iseppi et al., 2017). Although 
there has been a recent increase in the development of epigenetic 
clocks for fishes, the largest vertebrate class, and birds (Anastasiadi 
& Piferrer, 2020; Bertucci et al., 2021; Mayne, Korbie, et al., 2020). 
This study is the first to develop an epigenetic clock for reptiles. It 
targets the world's most widely distributed reptile, the endangered 
green turtle, a species that exemplifies the challenges of obtaining 
basic life- history information to support effective risk assessment 
and management.

There are several potential limitations of our green turtle epigen-
etic clock. First, like many other epigenetic clocks for wild animals 
it was developed and validated with a relatively low sample size (n 
= 63). This reflects the difficulty of obtaining known age samples 
for marine turtles because of their longevity and maritime life- 
history. Ideally, a sample size of at least 134 samples is required for 
epigenetic clocks with high statistical power (Mayne et al., 2021). A 
larger sample size would decrease the MAE, the relative error, and 
the standard deviation. Although the overall MAE in this study was 
2.1 years, the error was found to be higher in older samples (Table 2, 
Table S1, Figure S5). This suggests the priority to obtain older age 
samples to improve the model. However, it should be noted that 
other epigenetic clocks with low samples sizes (<70 samples) still 
produce reliable epigenetic clocks (Polanowski et al., 2014; Wright 
et al., 2018). Moreover, without date of birth, the exact age of an 
individual can be difficult to define. This can result in an increase in 
error in the epigenetic age prediction as an individual may be stated 
as 1 year old but could range between 1 year and 1 day to 1 year 
and 365 days. However, another consideration is that absolute age 
may not be necessary for an epigenetic clock to provide useful in-
formation for management, so long as an epigenetic clock can place 
animals into age classes, it may be sufficient for downstream popula-
tion analyses (Caughley, 1966, 1977). For example, in close- kin mark- 
recapture studies, age order provides a valuable increase in ability to 

estimate population size (Bravington et al., 2014). This means that 
epigenetic clocks need not be highly accurate or precise for all appli-
cations (Jarman et al., 2015). It should also be noted here that there 
is no other nonlethal alternative to predict the age of green turtles. 
Although an improved model can be made when more samples be-
come available, our model offers a significant advancement over 
available alternatives for the management of green turtles.

At the time of this study, only the green turtle genome was avail-
able. Ideally, if all genomes were available, we would have performed 
genome pairwise alignments to determine the full list of conserved 
CpG sites. However, with the lack of genomic resources available 
we used RRBS on each species and aligned the data using the green 
turtle genome. This most probably returned a lower representation 
of the true number of CpG sites conserved between species. This 
is most probably due to different cut sites during RRBS, resulting in 
poor overlapping coverage. Another potential limitation is the use 
of just one individual for each species, which due to individual vari-
ation in cut sites, may result in apparently poor CpG conservation 
amongst species. When genomes for all species become available 
a more comprehensive analysis of CpG conservation between spe-
cies can be done. The RRBS sequencing coverage was also low com-
pared to other studies (Mayne, Korbie, et al., 2020; Stubbs et al., 
2017; Thompson et al., 2017). A low sequencing coverage may re-
sult in other potential age associated CpG sites not being identified. 
Nevertheless, the aim of the RRBS was to identify the best predic-
tors of age for the application with multiplex PCR, and despite the 
potential limitations, a practical model that is likely to meet end- user 
needs was derived.

The longevity of marine turtles makes it difficult to obtain a 
calibration sample set from known- age individuals across the en-
tire lifespan. This highlights an issue for epigenetic clock develop-
ment, that calibration data is necessary but often unavailable. In this 
study, the aim was to develop a universal clock for all marine tur-
tles. However, only known age green sea turtles were available and 
therefore the true transferability of the clock cannot be tested until 
an extensive known- age data set becomes available for the other 
species. Since this is unlikely to occur soon, an alternative and more 
practical approach to validation may be to use recapture time in-
tervals rather than absolute known ages to confirm the precision of 
the model. If the intervals of the epigenetic age prediction error are 
consistently within range to the known timepoints, it could be used 
as an alternative, albeit more ad hoc, validation. We performed this 
kind of longitudinal validation by sampling of two individuals at dif-
ferent time points. From only two cases, no valid statistical conclu-
sion can be drawn, but the good agreement between observed and 
expected ages in this preliminary result (within the model's perfor-
mance error rate as detailed in Table 2), suggests that this approach 
could be valuable when applied to other populations. The model can 
be further validated when other recaptures become available. We 
emphasise that the utility of epigenetic clocks derived for marine 
turtles must be considered in the context of specific management 
needs and the virtually nonexistence of viable alternative methods 
for estimating age.
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The second limitation of the model was calibrating the model 
with only two captive populations. Different animal populations are 
known to have unique genome- wide epigenetic signatures (Ardura 
et al., 2017; Hu & Barrett, 2017; Tönges et al., 2021), and potentially 
such signal may confound efforts to isolate age- predictive CpG sites. 
However, despite demonstrating that indeed at a genome- wide scale 
our study populations exhibited distinct epigenetic signatures, we 
showed that were no differences between them with the CpG sites 
used in the age- predictive model. The selection of the most strongly 
age informative CpG sites should focus the epigenetic clock on CpG 
sites that are strongly age affected in any population.

A final caveat for the application of our model relates to the 
age range to which it can be reliably applied. The oldest sample 
in this study was 43 years old, but marine turtles are capable of 
living up to 90 years (de Magalhães & Costa, 2009; Mayne et al., 
2020). Simulations have shown that epigenetic clocks are most 
accurate with age ranges on which they are trained (Mayne, 
Berry, et al., 2021). Therefore, the performance of the model 
may decrease beyond 43 years, the maximum chronological age 
within the training data. Green turtles first breed at c. 20 years 
and have a maximum lifespan of 75 years, although this may vary 
between populations (Blechschmidt et al., 2020; Jensen et al., 
2018; Tacutu et al., 2018). Turtles older than 40 years may repre-
sent demographically significant components of wild populations 
because of the higher fecundity that is often observed in older 
cohorts (Esteban et al., 2017). The lack of age markers in turtles 
historically has made such a hypotheses difficult to test, but it 
further emphasises the importance of future validation with older 
known age turtles.

The growing number of epigenetic clocks across vertebrate spe-
cies is revealing similar probably regulatory functions for age- related 
CpG sites. Similar gene ontology terms have been found in epigen-
etic clocks from a range of mammals (Horvath, 2013; Stubbs et al., 
2017; Thompson et al., 2017). For example, in canids, age related 
CpG sites are enriched for genes relating to histone modification 
(Thompson et al., 2017). More insight into the biological processes 
that relate CpG sites to age will become available as more epigen-
etic clocks are developed for a wider variety of species, including 
nonvertebrates. The current study highlights the potential of DNA 
methylation as a predictor of age in a major clade of vertebrates 
where it has not previously been demonstrated. This is important 
for wild reptile management as the measurement of DNA methyla-
tion can be cost effective and high throughput, making it a practical 
solution for many species.

5  |  CONCLUSION

Our study shows that epigenetic clocks can be used in a reptilian 
species in a nonlethal manner to estimate age. Lack of estimates 
for this important life history parameter have been a significant 
constraint for research on marine turtle population biology in the 
past. This method paves the way for applications to fundamental 

ecological questions needed to inform conservation management 
of endangered species— including but not limited to, growth rates, 
population size estimates, and mortality rates. Future applications 
include using the model to construct population specific growth 
curves by measuring length and predicting age –  critical analyses 
that have rarely been available to support the management of this 
iconic group of organisms.
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