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Abstract
Egg predation by invasive and native species may have severe impacts on endangered species and negatively affect species 
recovery. We assessed the levels of egg predation within green turtle (Chelonia mydas) clutches on the island of Diego Gar-
cia (7.42°S, 72.45°E), Chagos Archipelago (Indian Ocean). Native coconut crabs (Birgus latro) and ghost crabs (Ocypode 
spp.), as well as introduced black rats (Rattus rattus), were predators of eggs, with these species entering nests via tunnels 
dug obliquely in the sand. Often whole eggs were removed from clutches. For example, the mean clutch size at oviposition 
(mean 127.8 eggs, n = 23, range = 74–176) was significantly larger than at the end of incubation (mean 110.9 hatched and 
unhatched eggs, n = 16, range = 9–147). In other cases, egg predation was recorded where the egg had been opened and 
contents were eaten in the nest. Overall, hatching success (the percentage of eggs laid leading to a hatchling emerging from 
the egg) was 64.9%, while 3.1% of eggs were predated within nests, 18.1% died during incubation without predation and 
13.9% were removed. We reviewed evidence from 34 sites around the world identifying 36 predators that were either native 
(e.g., crabs, and goannas, n = 30) or invasive (e.g., rats, and pigs, n = 8). Depending on location, a predator could be identi-
fied as both native and invasive (e.g., dogs). We discuss how either nest protection and/or invasive predator eradication may 
be used to increase egg survival and when these approaches might be used.

Keywords Invasive species · Predator management · Conservation · Rat eradication · Marine protected area (MPA) · 
Marine turtle

Introduction

The survival rate of offspring is a key demographic factor 
that drives the success of populations (Albon et al. 2008) 
and hence, assessment of factors driving offspring survival 
has been a central component of ecological studies for many 
decades (Gibson et al. 2017; Reglero et al. 2018). In the most 
general terms, there is trade-off between parental investment 
in individual offspring and their survival. For example, some 
fish that produce millions of small eggs will tend to have 
lower rates of survival (Anderson and Gillooly 2021), while 
some large vertebrates, like whales and elephants, produce a 

few large offspring and have extended parental care resulting 
in higher offspring survival (Lueders et al. 2012). Due to the 
key role in driving population dynamics, factors that cause 
long-term changes in offspring survival rates may influ-
ence population trajectories (Reichert et al. 2020; Parker 
et al. 2021). As well as levels of mortality driven by natural 
predators, other factors that may increase offspring mortal-
ity include introduced invasive predators (Spencer 2002), 
direct human harvesting, including poaching of eggs (Phea-
sey et al. 2021) and climate warming (Hao et al. 2021).

Sea turtles are a group where several species are endan-
gered, particularly at regional scales, and where many of 
these disparate factors can play important roles in influenc-
ing offspring survival and hence population trajectories 
(Mazaris et al. 2017). Female sea turtles typically produce 
several clutches in a single nesting season laying several 
hundred eggs (e.g., Hays and Speakman 1991). In some 
parts of the world, there may be high levels of nest predation 
from natural occurring predators. For example, in Florida, 
raccoons (Procyon lotor) are an important nest predator and 
have led to efforts of protecting nest sites with metal cages 
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(Engeman et al. 2016) or removal of raccoons from islands 
as an effective management strategy (Garmestani and Per-
cival 2005), while in Australia, yellow-spotted goannas (Var-
anus panoptes) are important nest predators (Lei and Booth 
2017b). Red foxes (Vulpes vulpes) are a widely recorded 
nest predator in the Mediterranean leading to screening of 
nests with metal grids in Turkey (Kaska 2000; Kaska et al. 
2010). In some areas, particularly historically but also more 
recently, harvesting of eggs has been thought to underpin 
declines in population abundance (Cáceres-Farias et al. 
2022). As embryo mortality increases in sea turtle nests at 
high nest temperatures, there is also concern that embryo 
mortality rates will increase associated with climate warm-
ing (Laloë et al. 2017; Hays et al. 2017). Conversely, major 
increases in nesting numbers in some parts of the world have 
often been attributed to conservation efforts reducing the 
level of egg poaching (Mazaris et al. 2017).

Given the importance of hatchling survival for sea turtles, 
we assessed the relative importance of nest predation for 
green turtles (Chelonia mydas) nesting at a major rookery 
on an isolated island where harvesting or poaching of eggs 
is zero but where there are a range of potential predators, 
both natural and introduced. In this way, our work helps 
identify the importance of managing and / or removing 
invasive predators that may have several negative ecosys-
tem consequences.

Materials and methods

The study was undertaken on the island of Diego Garcia 
(7.42°S, 72.45°E), Chagos Archipelago (Indian Ocean) 
which lies in the center of one of the world’s largest 
marine protected areas (MPA; Hays et al. (2020)). After 
two centuries of exploitation, turtles in the Chagos Archi-
pelago have been protected since around 1970 with all life 
history stages (nests, foraging juveniles, nesting adults) 
receiving full protection. Diego Garcia is the only inhab-
ited island in the archipelago.

We patrolled the index beach on Diego Garcia (Fig. 1a) 
at night in search of nesting females and early morning 
for tracks leading to successful nests or a nesting female. 
If possible, we counted eggs within clutches as they were 
laid but if this was not possible (e.g., due to the turtle 
covering the nest with her rear flippers), then the nest was 
carefully excavated immediately after the turtle disguised 
her nest and the eggs were counted and carefully placed 
back in the same general order as they were laid. Nests 
were marked via triangulation to tree trunks or branches of 
nearby vegetation that were marked with different colored 
tape. The distance from each tree/branch to the nest was 
recorded along with the tape color and a bearing was taken 
from each tree to the nest.

Fig. 1  a Diego Garcia (land shaded gray) and the index beach (indi-
cated by the red lines; 2.8 km) with a map showing the location of 
the Chagos Archipelago in relation to the wider Indian Ocean (red 
boundary = marine protected area). b Remnants of a green turtle nest 
predated by a coconut crab (Birgus latro) with scattered eggshells on 
the sand surface and pierced eggs with egg remains. c A coconut crab 

piercing and eating a green turtle egg. Predated scattered eggs can 
be seen in the background on the sand surface. d Coconut crab bur-
row into a green turtle nest which was used by other predators (e.g., 
black rats (Rattus rattus), ghost crabs (Ocypode spp.), strawberry her-
mit crabs (Coenobita perlatus), warrior crab (Cardisoma carnifex) to 
scavenge eggs
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Nests were monitored for signs of hatching after 60 days 
of incubation. Nests were excavated at least 65 days after 
clutch deposition. For each excavation, hatch success was 
recorded through counts of empty eggshells and unhatched 
eggs. Unhatched eggs were opened to determine the stage 
at which development had stopped, using descriptions and 
diagrams from Smith et al. (2021). The number of predated 
eggs (eggs with small, snipped hole / slit; ~ 1.5cm) indicative 
of being opened by crabs (Maros et al. 2003) were recorded 
(Fig. 1b–d). Nests were also excavated after observing hatch-
ing events from nests where the clutch size was not counted 
at oviposition. Nest depth was measured to the top and bot-
tom of the egg chamber. Nests (marked and un-marked) 
were checked for signs of predation, to note the predator 
and incident (e.g., type and number of predators around the 
nest, location of burrow or access point, and the number of 
opened eggs if seen on the surface).

Global review

We compiled studies that identified predators of sea turtle 
nests around the world. To do this, we searched WoK using 
the search terms under TOPIC (“sea turtle*” AND “nest 
predat*”), (“sea turtle*” AND “egg predat*”), (“marine 
turtle*” AND “nest predat*”) and (“marine turtle*” AND 
“egg predat*”) and then completed a backward citation 
search from the most recent paper (Espinoza-Rodríguez 
et al. 2023). Only dominant primary and secondary preda-
tors were included in the global review. Other predators 
reported in studies that were found to cause little impact are 
listed in the results section but are not included in the global 
predator map.

Results

Field observations

Although not observed in nests where oviposition and exca-
vation counts were conducted, there were observations of 
predators in nests that we had come across during other 
data collection along the index beach. We observed ghost 
crabs (Ocypode spp.), coconut crabs or robber crabs (Birgus 
latro) and black rats (Rattus rattus) consuming turtle eggs 
at the sand surface (Fig. 1b–d). In all these cases where we 
observed eggs being predated, the adjacent nest had at least 
one tunnel running obliquely down toward the nest chamber. 
On many separate occasions of opportunistic observations of 
unmonitored nests, we observed recently laid clutches (in the 
last week or so) with eggs removed from the nest and eaten 
on the sand surface. Between 05/02/2021 and 31/03/2021 
counts of eggs on the sand surface close to fresh burrows 
ranged from 2 to 69 eggs (mean ± SD: 14.8 ± 16.1 eggs, 

n = 25; Fig. 1b; c, Table S2). Coconut crabs dig large bur-
rows (Fig. 1d) into the nests and the eggs are usually brought 
to the surface where evidence lies in scattered eggshells on 
the sand. These large burrows present an opportunity for 
rats, ghost crabs, strawberry hermit crabs (Coenobita per-
latus), that were observed utilizing the burrow and scaveng-
ing eggs. Hermit crabs, smaller ghost crabs, warrior crabs 
(e.g., Cardisoma carnifex), and fiddler crabs (Uca spp.) were 
observed to loiter around predated nests and feed on dried 
eggshells presumably left by coconut crabs. Rats were also 
observed digging down into the sand. From observations on 
Diego Garcia, it seems coconut crabs cause the most impact 
to nest success, with one individual able to decimate a nest 
by removing a large proportion of eggs, along with creating 
an opportunity for other predators to enter the nest easily.

Clutch size

Nests were excavated between 66 and 76 days after eggs 
were laid (mean ± SD = 73 ± 3 days, n = 19). The clutch 
size, measured at oviposition, ranged from 74 to 179 
eggs (mean ± SD = 127.8 ± 27.4 eggs, n = 23). Clutch size 
increased in larger turtles, with the CCL explaining 42% 
of the variance in the number of eggs per clutch (Fig. 2a, 
F1,21 = 15.1, r2 = 0.42. P < 0.001). The number of hatched 
and unhatched eggs remaining in the nest at the end of incu-
bation ranged from 9 to 147 eggs (mean ± SD = 110.9 ± 40.3 
eggs, n = 16), i.e., 13.2% lower than the mean number at ovi-
position. Where both the number of eggs at oviposition and 
at excavation was measured for the same clutch, the number 
at excavation was similarly 13.9% lower, a difference that 
was significant (means 133.1 and 114.6 eggs, respectively, 
paired t test, t12 = 2.61, P = 0.023). In some cases, the differ-
ence in number of eggs at oviposition and at excavation was 
extreme. For example, one clutch had 74 eggs at oviposition 
but only 9 at excavation, while for another the numbers were 
140 and 81, respectively (Fig. 2b; c; Table S1). In no cases 
were entire clutches dug up.

The number of hatchlings emerging from nests was 
mean ± SD = 85.4 ± 46.4 (n = 16 clutches). For clutches 
where both the number of eggs at oviposition and the num-
ber of hatchling emerging were assessed, the mean ± SD 
hatching success (% of eggs laid that led to hatchling emerg-
ing from the egg) was 64.9 ± 38.5% (n = 13 clutches). The 
mean number of eggs per clutch with holes indicative of crab 
predation within the nest was 4.1 eggs, i.e., 3.1% of the mean 
number of eggs at oviposition, and the mean number of eggs 
that failed to complete development but were not predated 
was mean ± SD = 24.2 ± 34.2 eggs per clutch (n = 13), i.e., 
18.2% of the mean number of eggs at oviposition. Nest depth 
to the top of chamber was mean ± SD = 52 ± 12 cm (n = 13) 
and to the bottom of the chamber was mean ± SD = 66 ± 14 
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cm (n = 13). Crabs excavated between 1 and 3 burrows 
angled at around 45° to reach the top of the egg chamber.

In summary, when assessing the fate of eggs within a 
clutch about 13.9% of eggs were removed, 3.1% were pre-
dated and left inside the nest, 18.1% failed to complete devel-
opment (not predated) and 64.9% emerged as hatchlings.

Predators of sea turtle nests around the world

From 40 studies (including our current study), we found a 
range of both vertebrate and invertebrate predators of sea tur-
tle nests around the world as well as native and invasive spe-
cies (Fig. 3; Table S3). We found predation studies at 34 sites 
for all sea turtle species, including green, loggerhead (Caretta 
caretta); olive ridley (Lepidochelys olivacea), hawksbill (Eret-
mochelys imbricata), flatback (Natator depressus), leatherback 
(Dermochelys coriacea), and Kemp’s ridley (Lepidochelys 
kempii) turtles. Thirty-six predator species were identified, 
eight of which were identified as invasive, including feral 
pigs, Sus scrofa (Pereira et al. 2023); red foxes (Lei and Booth 
2017b); armadillo, Dasypus novemcinctus (Engeman et al. 
2006); Asian mongoose Herpestes javanicus (Leighton et al. 
2011), and rats (present study). Depending on the site loca-
tion, a predator could be classed as invasive or native (e.g., 
dogs and coyotes). From our global review, we found the most 
important predators are medium sized mammals (e.g., pigs, red 
foxes), crabs (e.g., yellow crab, Johngarthia lagostoma) and 
Varanus spp. Some of the species we have included (in Fig. 3) 

are classed as secondary or opportunistic predators but are 
still known to cause damage to nests (e.g., rats, and vultures). 
Other predators were found in our search but were recorded 
as having little impact on nests at the study site (and excluded 
from Fig. 3) include, striped skunk (Mephitis mephitis), Tayra 
(Eira barbara), opossum (Didelphis spp.), caracara (Caracara 
cheriway) and maggots (Espinoza-Rodríguez et al. 2023), 
spotted skunk (Spilogale putorius), and bobcats (Felis rufus; 
Engeman et al. 2006), Northern river otter (Lontra canaden-
sis), American mink (Mustela vison), crow (Corvus spp.), and 
snakes (Butler et al. 2020).

Discussion

Predators impact sea turtle clutches in a number of ways. In 
some parts of the world, entire clutches can be dug up and 
predated. For example, in Australia, dingoes (Canis lupus 
dingo), goannas, and feral pigs can cause complete loss of 
flatback and olive ridley nests through nest excavation and 
consumption or damage to every egg in a clutch (Nord-
berg et al. 2019). However, this type of nest excavation and 
entire nest destruction was not observed on Diego Garcia, 
but instead it appeared as if eggs were being removed indi-
vidually by crabs and rats entering the nests via tunnels. We 
report both coconut crabs and ghost crabs predating eggs and 
to the best of our knowledge we report the first observations 
of coconut crabs actively burrowing into sea turtle nests to 

Fig. 2  For green turtles 
on Diego Garcia, Chagos 
Archipelago, we show the 
a relationship between the 
curved carapace length (CCL) 
and clutch size (F1,21 = 15.1, 
r2 = 0.42. P < 0.001). b relation-
ship between clutch size and the 
number of eggs removed from 
the nest between oviposition 
and excavation (F1,11 = 0.41, 
r2 = 0.04. P = 0.5) and the distri-
bution of the number of eggs at 
c oviposition and d excavation 
(Table S1)
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predate eggs. Coconut crabs play a critical ecological role 
in Indo-Pacific island ecosystems. As omnivores, they feed 
on an array of plants and animals and their scavenging activ-
ity aids decomposition of rotting material (Stensmyr et al. 
2005). Through active hunting, coconut crabs act as a top 
predator on island ecosystems and have been referred to as 
the ‘ruler of the atoll’, even sometimes killing birds (Laidre 
2017). Our observations suggest that the impact of direct egg 
predation by coconut crabs is magnified by their tunneling 
into nests, thereby creating a pathway for other predators. 
Similarly, in Australia, Lei and Booth (2018) found that the 
opening of a nest by a goanna caused a significant increase 
in visitation rates to the nest by other goannas and crabs. On 
high-density sea turtle nesting beaches, clutches are dug up 
by subsequent nesting turtles and causes a significant loss of 
eggs directly and provides an opportunity for other predators 
to find eggs (Ocana et al. 2012).

Our findings add to the growing evidence that crabs 
can be important predators of sea turtle nests. For exam-
ple, Marco et al. (2015) reported that in unprotected log-
gerhead turtle nests on Cape Verde (Atlantic Ocean), on 
average ghost crabs (Ocypode cursor) predated 50% of 
the eggs. Furthermore, Marco et al. (2015) suggested that 
dominant crabs might defend the nest they prey upon, 
sequentially removing eggs over a period of time. On Trin-
dade Island in Brazil, de Faria et al. (2022) observed yel-
low crabs predating eggs as they were laid by green turtles 
and report an average loss of 3 eggs per nest during the 
nesting stage. Similarly, ghost crabs have been reported 
predating high numbers of turtle eggs in other parts of 
the world (e.g., > 15% of eggs in the Seychelles (Hitchins 
et al. 2004)). In other areas, crab predation is lower. For 
example, for green turtles in Malaysia, just 1.3% of eggs 
were lost due to ghost crab predation (Ali and Ibrahim 

Fig. 3  Examples of common sea turtle nest predators identified across 
the world (Table S3) shown by icons including mammals (e.g., can-
ids, procyonids, pigs, mongoose, armadillo), reptiles (goannas, salt-
water crocodiles), invertebrates (e.g., ghost crabs, coconut crabs, ants, 
mole crickets). Secondary and opportunistic predators of accessible 
nests are also included, such as rats, birds (e.g., vultures), and hermit 
crabs. 1 = coconut crab, ghost crab, rat, hermit crab (present study); 
2 = ghost crab (Marco et  al. 2015); 3 = ghost crab (Hitchins et  al. 
2004); 4 = red fox (O’Connor et  al. 2017); 5 = red fox, goanna (Lei 
and Booth 2017b); 6 = goanna (Lei et al. 2017); 7 = goanna (Lei and 
Booth 2017a); 8 = goanna, feral pig, dingo (Nordberg et  al. 2019); 
9 = feral pig (Whytlaw et  al. 2013); 10 = saltwater crocodile (Whit-
ing and Whiting 2011); 11 = Asian water monitor (Sivasundar and 
Devi Prasad 1996); 12 = ghost crab, hyena, feral dog, jackal (Tripa-
thy and Rajasekhar 2009); 13 = domestic dog, golden jackal (Bhupa-
thy 2003); 14 = red fox, golden jackal (Brown and Macdonald 1995); 
15 = red fox, badger (Başkale and Kaska 2005); 16 = Asian mongoose 
(Leighton et  al. 2011); 17 = raccoon, ghost crab (Brost et  al. 2015); 
18 = raccoon, armadillo (Engeman et al. 2006); 19 = feral pig, coyote 
(Butler et al. 2020); 20 = red fox, raccoon (Halls et al. 2018); 21 = rac-

coon (Welicky et  al. 2012); 22 = raccoon (Engeman et  al. 2010); 
23 = raccoon (Ratnaswamy et al. 1997); 24 = feral pig (Engeman et al. 
2019); 25 = coyote (Lamarre-DeJesus and Griffin 2015); 26 = ghost 
crab (Bouchard and Bjorndal 2000); 27 = red fire ant (Parris et  al. 
2002); 28 = red fire ant, tropical fire ant, little fire ant (Wetterer et al. 
2014); 29 = click beetle larvae (Donlan et  al. 2004); 30 = coyote, 
ghost crab (Shaver 2020); 31 = raccoon (Garcıía et al. 2003); 32 = rac-
coon, hermit crab, coati, vulture (Espinoza-Rodríguez et  al. 2023); 
33 = coati, vulture, dog (Fowler 1979); 34 = vulture, dog (Burger and 
Gochfeld 2014); 35 = dog (Siqueira-Silva et  al. 2020); 36 = domes-
tic dog, fox (Nayelli Rangel Aguilar et  al. 2022); 37 = pig (Pereira 
et al. 2023); 38 = yellow crab (de Faria et al. 2022); 39 = mole cricket 
(Maros et  al. 2003); 40 = Nile monitor (Sampaio et  al. 2022). Sym-
bol color: green = green turtle (Chelonia mydas); yellow = logger-
head (Caretta caretta); blue = olive ridley (Lepidochelys olivacea); 
red = hawksbill (Eretmochelys imbricata); brown = flatback (Nata-
tor depressus); black = leatherback (Dermochelys coriacea); pur-
ple = Kemp’s ridley (Lepidochelys kempii). Non-native = imported, 
invasive or introduced. Icon source: R package Rphylopic (Gearty 
et al. 2023)
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2002). The drivers of this variable impact of ghost crabs 
are unknown but may be linked to crab density or the 
ability of crabs to access clutches is linked to nest depth. 
Certainly, on Diego Garcia it appears that tunnels dug by 
coconut crabs is a route of access to eggs for ghost crabs, 
allowing them to access deeply buried eggs that might 
otherwise be unavailable. On some nesting beaches, crab 
predation is frequent on hatchlings crawling from the nest 
to the sea which can cause a significant decrease in hatch-
ling recruitment (Martins et al. 2021).

Across the world, rats introduced to islands have had huge 
negative ecosystem impacts such as declines in seabird num-
bers (Lock 2006; Caut et al. 2008; Carr et al. 2013). These 
seabird declines in turn can impact ecosystem functioning 
such as loss of nutrients, from bird guano, decreasing coral 
reef ecosystem productivity and diversity (Graham et al. 
2018) even resulting in a change in coral reef fish behavior 
(Gunn et al. 2023). Rats also impact sea turtles. For example, 
in New Caledonia, invasive rats heavily predate on seabird 
eggs and chicks; however, in the absence of birds outside of 
their nesting season, rats shift their diet and prey on green 
turtle hatchlings (Caut et al. 2008). Although, rat predation 
of hatchlings has been reported, to our knowledge, our study 
is the first to report observations of rat predation on sea tur-
tle eggs, likely facilitated by nest access through the burrows 
created by coconut crabs.

While our study was not able to resolve the relative 
importance of crab versus rat predation, we were able to 
show that together these predators were having a major 
impact, predating almost 15% of eggs. Addressing the rela-
tive importance of these different predators might potentially 
be addressed using modern camera technology. For example, 
Lei and Booth (2017b) elegantly used cameras to identify 
predators of turtle nests in Australia.

There are essentially two methods to reduce predation of 
sea turtle eggs: protection of nests or eradication of the pred-
ator. Predator eradication is certainly an option where preda-
tors are an introduced species. For example, introduced feral 
pigs historically decimated green turtle nests on Trindade 
Island, Brazil and pig removal has led to recovery of nest-
ing numbers (Pereira et al. 2023). Similarly, on Keewaydin 
Island, Florida, pig eradication resulted in a decrease from 
87% to just 1% of nests destroyed by this invasive preda-
tor (Engeman et al. 2019). In some cases, eradication of 
invasive species may have very broad ecosystem benefits. 
For example, ongoing efforts to remove rats from oceanic 
islands, including within the Chagos Archipelago (Russell 
and Holmes 2015; Benkwitt et al. 2021) is designed pri-
marily to benefit sea birds and also improve the quality of 
neighboring reefs, but may have the additional benefit of 
reducing predation on turtle eggs (our study).

Our global analysis revealed that predation of sea tur-
tle eggs is more often than not by native animals, such a 

raccoons and crabs. In cases of high predation by native ani-
mals, then protection of nests, for example with cages, may 
help reduce predation both with clutches relocated to hatch-
eries as well as those protected in situ (Marco et al. 2015). 
For example, in Georgia, large mesh screens are designed 
to protect nests from raccoons and secondary smaller mesh 
screens to protect against ghost crabs (Butler et al. 2020). In 
Guinea-Bissau, Sampaio et al. (2022) used a variety of tech-
niques to protect green turtle nests from Nile monitors (Vara-
nus niloticus), including scent covering, by sprinkling clove 
essence aqueous solution on the surface sand to mask the 
scent of turtle eggs, track covering to remove visual cues and 
square metal nets (over and buried into the sand). In some 
cases, however, protection via fences has not been sufficient, 
for example, in Java, Indonesia, all fenced and unfenced natu-
ral nests were predated by monitor lizards (Maulany 2013). 
Such approaches to protect sea turtle nests from native preda-
tors may be costly and difficult to implement and so it may be 
important to assess if such predation is having an important 
negative impact on a population’s trajectory, before decid-
ing if intervention is warranted. For example, both at Diego 
Garcia and in the Cape Verde Islands, with 17% and 50% pre-
dation by crabs, respectively, nesting numbers are increasing 
(Mortimer et al. 2020; Hays et al. 2022), suggesting that crab 
predation is not sufficient to prevent population increases.

Often in sea turtle research, clutch size is estimated by 
excavating nests once hatchlings have emerged and then by 
counting shell fragments and unhatched eggs. We echo the 
concerns of Marco et al. (2015) that such clutch size esti-
mates may be compromised at sites where eggs are being 
removed from clutches by crabs. In those cases, obviously 
the clutch size will be underestimated, sometimes vastly, at 
nest excavation. In an extreme case we found that only nine 
eggs remained in the nest chamber at the end of incubation 
while Marco et al. (2015) reported that 100% of eggs could 
sometimes be removed from clutches by crabs. In com-
mon with many studies, we found that larger females (with 
a resulting larger body cavity) had a higher reproductive 
effort and tended to lay more eggs per clutch (van Buskirk 
and Crowder 1994). The most parsimonious explanation for 
why clutch size increases with female size is that females 
are minimizing the energetic cost of nesting per egg laid 
(Hays and Speakman 1991). In other words, laying many 
more and smaller clutches would be much more energeti-
cally expensive compared to a few large clutches. It might 
be argued that larger clutches might be more susceptible 
to being located and, hence, predated, if they have a larger 
odor signature. However, we found no relationship between 
clutch size and the number of eggs removed, suggesting that 
clutches were located by predators regardless of their size.

In summary, we identified predation of sea turtle nests 
by crabs and rats but, while levels of predation could some-
times be very high for individual nests, nest predation does 
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not seem to be preventing an increase in nesting numbers. 
Presumably, the impacts of nest predation on Diego Garcia 
are offset by the complete protection nests receive from any 
human harvesting.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00227- 023- 04327-9.
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