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Abstract: Members of the genus Chondrus are well-known
from temperate and cold waters. Chondrus ocellatusHolmes
was reported fromHawai‘i Island (19°N latitude) in 1999 as a
new record based on vegetative and tetrasporangial char-
acteristics. The first specimens were collected by Setchell in
1900 in Hilo, HI. The presence of a Chondrus species in the
subtropics has been a phycological enigma for over
100 years. We addressed the question of species identity and
biogeographic affinities of the Hawaiian Chondrus with
fresh cystocarpic material, DNA samples, and phylogenetic
analyses. Analysis and comparison of five genes (nuclear:
EF2; plastid: psbA, rbcL, and 23S/UPA; mitochondrial: COI)
from Hawaiian Chondrus and holotype and topotype mate-
rial of 10 of the 11 accepted Chondrus species indicate that
Hawaiian specimens are C. retortusMatsumoto et Shimada.
However, unlike type material, the Hawaiian specimens are
commonly pinnulate, vary significantly in secondary med-
ullary filament density, and have mature cystocarps filling
the entire medullary space. This study shows the value of
using multi-gene loci and comparing multiple sequences of
several species to confirm taxonomic conclusions. Our
findings suggest that C. retortus may have immigrated
via rafting on natural floating material or on ships’ hulls.
Solving this old puzzle adds new insight into Hawaiian
phytogeography.
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1 Introduction

The 11 currently accepted species of Chondrus (Guiry and
Guiry 2023) are found primarily in temperate, colder regions
in the intertidal to 24 m deep. Chondrus is a distinct genus in
the Gigartinaceae delineated by reproductive morphology
(Stackhouse 1797). The genus is characterized by functional
generative auxiliary cells that form a few, inwardly directed
protrusions bearing gonimoblast initials that grow
into diffuse, filiform gonimoblast filaments that infiltrate
between the medullary and secondary filaments, and often
link to the medullary and secondary filaments by secondary
pit connections (Fredericq et al. 1992; Hommersand et al.
1993). Inner gonimoblast cells remain narrow. Functional
auxiliary cells are surrounded by an envelope composed of
secondary filaments (Fredericq et al. 1992; Hommersand
et al. 1993). Tetrasporangia are borne in secondary filaments
formed entirely within the medulla (Fredericq et al. 1992;
Hommersand et al. 1993).

Species of Chondrus in the northwest region of the
Pacific Ocean have a rich taxonomic and nomenclatural
history. Chondrus ocellatus Holmes is distributed along the
exposed shores of China, Japan, and Korea (Taylor and Chen
1994) and exhibits habitat preferences for lower intertidal
rock, reef, or pebble substrata. Okamura (1909, 1932, 1936)
defined this species as comprising five forms based on
morphological characters: f. ocellatus (as ‘f. typicus’), f.
canaliculatus, f. giganteus, f. crispus, and f. nipponicus.
Mikami (1965) raised f. canaliculatus and f. giganteus to the
rank of species: C. verrucosus Mikami and C. giganteus
Yendo, respectively, and proposed three additional formae
for C. ocellatus: f. parvus, f. aequalis and f. crispoides. Brodie
et al. (1991) placed the formae f. crispus and nipponicus into
the species C. nipponicus Yendo based on life history and
morphological evidence. Later, Brodie et al. (1993) proposed
to transfer f. crispoides to C. nipponicus based on
morphology and culture experiments. Hommersand et al.
(1994, 1999) clarified many members of the order
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Gigartinales using the rbcL gene, including five species of
Chondrus. Most recently, Matsumoto and Shimada (2013)
separated C. verrucosus “small type” from C. verrucosus and
described the new species as Chondrus retortus Matsumoto
et Shimada based on its small size, canaliculated blades that
are crispate (=curled), rounded medullary cells, and its rbcL
and EF2 gene sequences.

The biogeographic history of C. ocellatus in the north-
west Pacific Ocean was investigated by Hu et al. (2015) using
DNA sequence analysis of two molecular markers, e.g.
mitochondrial cytochrome oxidase subunit I (mtDNA COI)
and the nuclear ribosomal internal transcribed spacer
(nrDNA ITS). Hu et al. (2015) found that Hawaiian samples of
Chondrus grouped together as “Lineage C” with samples
from Amatsukominato, Chiba, Japan, whereas Lineage “A”
consisted primarily of Japanese, Chinese, and a few Korean
samples. Lineage “B” consisted of eight samples from China
and most of the samples from Korea. Analysis using mtDNA
COI indicated that the divergence time between Chondrus
ocellatus Lineages “A” and “B” (5.96 Ma) was similar to that
between lineages “A” and “C” (6.07 Ma), but that Lineage
“B” may have diverged from Lineage “C” earlier, at about
7.73 Ma. The authors noted that it is possible that repro-
ductive barriers have led to genetic isolation among the
three lineages of C. ocellatus, and that additional cryptic
formae or species may exist, but kept all specimens lumped
as C. ocellatus, including the enigmatic Hawaiian Chondrus.

Yang and Kim (2022) investigated the phylogeography of
three species: C. ocellatus, C. nipponicus, and C. giganteus,
using rbcL and COI5-P molecular markers and found that
these species exactly fit into the lineages “A”, “B”, and “C”
defined by Hu et al. (2015) for Chondrus ocellatus. Thus, Hu
et al. (2015) had mistakenly grouped three species as one
single species, Chondrus ocellatus. Yang and Kim (2022)
concluded that there were 11 haplotypes of C. ocellatus (of
which two comprised 80 % of sequences: C01 and C10);
C. nipponicus had 14 haplotypes (of which two comprised
89 % of sequences: CN1 and CN10); and C. giganteus could be
separated into two haplotypes (CG1 and CG2) that differed by
two mutations.

Abbott reported Chondrus from Hawai‘i Island (19°N
latitude) in 1999 as a new record, although specimens had
“been collected many times over many years.” Abbott (1999)
identified specimens as C. ocellatus based on vegetative and
tetrasporangial characteristics, and warned that lack of
reproductive material made identification “hazardous” for
this member of the Gigartinaceae. The earliest known spec-
imen (UC622609)was collected byW. J. Setchell in 1900 inHilo,
HI. Most of the many herbarium specimens at Bishop
Museum that are labeled as Chondrus, were collected on the
east side of Hawai‘i Island in areas where submarine

groundwater discharge occurs. The occurrence of a Chondrus
in a warm, subtropical climate, like Hawai‘i, is very unusual.
Fertile material and DNA have never been critically studied
for specimens of Hawaiian Chondrus, until this study.

The objective of our research was to determine whether
the Hawaiian Chondrus is Chondrus ocellatus, another spe-
cies, or a new species. Our goal was to solve this long-
standing, 123-year long, taxonomic and biogeographic mys-
tery using thorough molecular, morphological, and
anatomical methods including comparisons of type material
or specimens from type locations.

2 Materials and methods

2.1 Field sampling

Individual thalli of Chondrus (Figure S1) were collected in 2014–2022
at three locations along the east Hawai‘i Island shoreline (Figure 1) at
or near the collection sites of specimens previously collected between
1900 and 2003 by Setchell, Doty, Abbott, Fortner, Magruder, McDer-
mid, and Okano. Additional thalli were sampled from cultures grown
at the Pacific Aquaculture and Coastal Resources Center in Hilo,
Hawai‘i.

Thalli were immediately preserved in 5 % formalin/seawater for
morphological study, or directly placed into silica gel desiccant, or
preserved inDNA/RNAShield (ZymoResearch, Cat. No. R1100, Irvine, CA,
USA) for molecular work. Samples were deposited in the University of
Louisiana at Lafayette Herbarium (LAF) and Bernice Pauahi Bishop
Museum Herbarium in Honolulu, HI (BISH). Chondrus specimens from
National Museum of Nature and Science (TNS) Tsukuba, Japan were
used for subsequent analyses.

2.2 Morphology and anatomy

Longitudinal, transverse, and periclinal sections were stained with 1 %
aniline blue in 1:1 distilled water: KARO® corn syrup or aceto-iron-
haematoxylin-chloral hydrate for periods of 30 min to 4 h and mounted
in 1:1 Hoyer’smedium:distilledwater followingmethods from Fredericq
et al. (1992).

2.3 DNA extraction and PCR amplification

In preliminary studies in 2014, 300 bp fragments of rbcL and ITS1
(internal transcribed spacer) were sequenced. However, the length of
these sequences was not informative enough to make a confident
taxonomic decision, and in April 2020, total DNA was extracted from
silica gel-dried samples, and samples from Hawai‘i preserved in DNA/
RNA Shield (Zymo Research, Cat. No. R1100, Irvine, CA, USA) using the
Zymo Quick Plant/Seed DNA Extraction kit (Zymo Research, Cat. No.
D6020, Irvine, CA, USA) following the manufacturer’s instructions. Total
DNA was extracted from Japanese herbarium samples (National
Museum of Nature and Science, Japan) of C. ocellatus, C. retortus, and
C. verrucosus using a modified herbarium extraction protocol (Cullings
1992; Doyle and Dickson 1987; Doyle and Doyle 1987; Hughey et al. 2001)
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(Table S1). Additional, selected DNA extractions were chosen from ma-
terial used by Hommersand et al. (1994, 1999) in the genus Chondrus,
including C. armatus, C. crispus, C. elatus, C. giganteus, C. nipponicus,
C. ocellatus, C. pinnulatus, C. verrucosus, and C. yendoi, as well as two
other members of the family Gigartinaceae housed in UL Lafayette
(Table S1). Those extractions were performed using a modified CTAB
protocol with a final cesium chloride-ethidium-bromide purification
step (see Hommersand et al. 1994 for more details).

Preliminary sequencing using rbcL and UPA determined that there
were no base pair differences among four individuals from three
distinct Chondrus populations collected in east Hawai‘i Island. There-
fore, only one representative (LAF 7580) was used for the multi-marker
analyses using five conserved genes for PCR: the chloroplast gene psbA
which encodes the photosystem II reaction center protein D1; the chlo-
roplast gene rbcL which encodes the large subunit of the marker
ribulose-l, 5-bisphosphate carboxylase/oxygenase (RuBisCO); the mito-
chondrial gene COI which encodes the cytochrome oxidase subunit I; a
portion of the nuclear elongation factor 2 gene (EF2); and the plastid
ribosomal 23S rDNA gene, also known as the universal plastid amplicon
(UPA). Amplification of DNA was done through polymerase chain
reaction (PCR) using a T100 Thermal Cycler (Bio-Rad).

PCR for psbA were performed using the primers referenced in
Yoon et al. (2002) and included an initial denaturation at 94 °C for 3 min
followed by 39 cycles at 94 °C for 30 s (denaturation), 52 °C for 50 s
(primer annealing), and 72 °C for 1 min (extension), followed by a final
extension at 72 °C for 5 min. PCR for rbcL were performed using the
primers referenced in Freshwater and Rueness (1994), the primer F645
referenced in Lin et al. (2001), and the primer F7 referenced in Gavio and
Fredericq (2002), and included an initial denaturation of 94 °C for 4min
followed by 2 cycles at 94 °C for 1 min (denaturation), 40 °C for 1 min

(primer annealing), and 72 °C for 2 min (extension), then 40 cycles at
94 °C for 1 min (denaturation), 42 °C for 1 min (primer annealing), and
72 °C for 2 min (extension), followed by a final extension at 72 °C for
5 min. Multiple overlapping reads were generated for rbcL to ensure
quality chromatograms were obtained for the full length of the
consensus read. PCR for COI were conducted using the primers refer-
enced in Saunders (2005) and Saunders and Moore (2013) with an initial
denaturation at 94 °C for 2 min followed by 40 cycles at 94 °C for 1 min
(denaturation), 45 °C for 1 min (primer annealing), and 72 °C for 1 min
(extension), followed by a final extension at 72 °C for 5min. PCR for EF2
were performed using the primers referenced in Le Gall and Saunders
(2007) with initial denaturation at 94 °C for 4min, followed by 38 cycles at
94 °C for 1 min (denaturation), 50 °C for 1 min (primer annealing), 72 °C for
2min (extension), and followed by a final extension at 72 °C for 7min.
Lastly, weusedprimers for 23S/UPA referenced in Sherwood and Presting
(2007)with an initial denaturation at 94 °C for 2min, followedby 30 cycles
at 94 °C for 20 s (denaturation), 55 °C for 30 s (primer annealing), and 72 °C
for 30 s (extension), and followed by a final extension at 72 °C for 10min.

2.4 Purification of amplification products

The PCR products were visualized through 10mm of acrylic shielding,
under low UV transillumination on a DyNA Light Dual Intensity UV
Transilluminator (LabNet) in a 1.1 % agarose – 1X TAE gel containing
500 ng of ethidium bromide per ml. Single stranded primers and unin-
corporated dNTPs were removed from PCR products by the addition of
2 μl of ExoSAP-IT™ (USB, Cleveland, Ohio) per 5 μl of amplified DNA
product. Reactions were incubated at 37 °C for 15 min, followed by
inactivation of ExoSAP-IT™ at 80 °C for 15 min.

Figure 1: Collection sites of Chondrus retortus
(light gray circles) around the Keaukaha area,
east side of Hawai‘i Island.

R.P. Kittle et al.: Chondrus retortus in Hawai‘i 3



2.5 Cycle sequencing

ABI Prism® BigDye™ Terminator sequencing kits were used (Applied
Biosystems). Cycle sequencing reactions using Purified PCR products
were subsequently cycle sequenced using the BrightDye® Terminator
Cycle Sequencing Kit (Molecular Cloning Laboratories [MCLAB], South
San Francisco, CA, USA) using 20 μl volumes, 4 μl of Ready Reaction
terminator mix, 2 μl of 5X Bright Dye™ sequencing buffer, 1 μl appro-
priate primer, and 1.5 μl of purified PCR product. Cycle sequencing was
performed as follows: 96 °C for 1 min, followed by 25 cycles of 96 °C for
15 s, 50 °C for 5 s, and 60 °C for 4 min. Both strands of each PCR product
were sequenced in separate sequencing reactions using primers with
sequences identical to those used for amplification. Resulting PCR
products were purified with ETOH/EDTA precipitation and sequenced
in-house at the UL Lafayette campus on an ABI Model 3130xl Genetic
Analyzer. Chromatograms were assembled using Sequencher 5.1
(Gene Codes Corp., Ann Arbor, MI, USA). RbcL sequences from archived
Chondrus extractions previously used in Hommersand et al. (1994, 1999)
were re-generated in this study using the above methods to confirm the
accuracy of sequences found in the NCBI GenBank database. We did not
submit the re-generated rbcL sequences since they proved to be iden-
tical to the original sequences.

Species identification, specimen collection information, and
GenBank accession numbers generated are listed in Table S1.

2.6 Phylogenetic, sequence divergence, and species
delimitation analyses

Additional sequences were exported from the public NCBI database
GenBank and added to the dataset (Table S1). Sequences for each gene
were aligned separately in MEGA v. 5.2.2 (Tamura et al. 2011) using the
CLUSTALW or MUSCLE algorithms, and then analyzed downstream.
The DNA matrices were exported onto the CIPRES server, namely
PartitionFinder 2 (Lanfear et al. 2017) to determine the best fitting
model of evolution and data partition. The single gene alignmentswere
1446 bp for rbcL, 1515 bp for EF2, 947 bp for psbA, 369 for UPA, and
616 bp for COI.

For each of the single gene alignments, protein-coding genes were
partitioned by codon position and the 23S rDNA gene was kept unpar-
titioned. This resulted in the GTR+Imodel to be used for each gene based
on the AICc (corrected Akaike information criterion) and AIC (Akaike
information criterion) scores. The alignment with these models and
partitioning scheme was then analyzed for maximum likelihood (ML)
with RAxML-HPC2 on XSEDE v. 8.2.12 (Stamatakis 2014) via the CIPRES
gateway (Miller et al. 2010) with 1000 bootstrap replicates.

The rbcL, EF2, psbA, 23S, and COI alignments included 44, 14, 9, 9
and 135 sequences of sequences of Chondrus, respectively. One to four
sequences of Mazzaella were used as the outgroup, except in the psbA
alignment that included Chondracanthus as the outgroup since Maz-
zaella sequences are unavailable. The newick file was imported into
FigTree 1.4.2 (Rambaut and Drummond 2016) as a starting point for
further editing in Microsoft Publisher.

Single loci alignments of five geneswere constructed for Chondrus.
Alignments were cropped at the 5′ and 3′ ends to minimize missing data.
Sequences were aligned with the CLUSTAL W (Thompson et al. 1994)
algorithm in the MEGA X software (Kumar et al. 2018). For Chondrus,
1233 bp, 776 bp, 643 bp, 369 bp, and 616 bp alignments were constructed

for rbcL, EF2, psbA, UPA, and COI, respectively. Sequence divergence
values were calculated as the number of pairwise base pair differences
in MEGA X (Kumar et al. 2018) and presented as a proportion
(the number of base pair differences divided by the alignment length)
(Tables S2–S5).

Species delimitation analysis for each gene was performed sepa-
rately using assemble species by automatic partitioning (ASAP)
(Puillandre et al. 2021) using the Jukes-Cantor substitution model for the
following parameters: split groups below 0.01 probability, highlighting
genetic distances between 0.005 and 0.05.

3 Results

3.1 Morphology and anatomy

Thalli of the Hawaiian species are up to 6.0 cm tall and up
to 5 mm at the base and are commonly dichotomously
branched with marginal pinnules approximately 2.5–3.3 cm
long and ∼1.67 mm wide (Figure 2). Female gametophytes
commonly bear old cystocarps (Figure 2). Pinnules and the
roundish-flattened stalk (Figure 3A) lack a constriction at the
point of insertion. Thalli vary significantly in the density of
secondary medullary filaments (sparse to compact) within a
specimen (Figure 3B). Main branches show dense aggrega-
tions ofmedullaryfilaments (Figure 3C–E)with few enlarged
stellate cells (Figure 3F) or with sparse filiform medullary
filaments in the center of the blade. Pinnules show a regular

Figure 2: Chondrus retortus. Dichotomously branched gametophytes
bearing old cystocarps. Marginal pinnules are common. Black arrows
indicate cystocarps. Scale bar = 1 cm.
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arrangement of medullary filaments, and a scarcity of sec-
ondary filaments (Figure 3G and H). The apical regions of
pinnules show an abundance of conjunctor cells issued from
intercalary cells forming secondary pit connections just
below the thallus surface (Figure 3I).

Abortive procarps scattered in the cortex are common
(Figure 4A) and easily recognized because an envelope
around abortive auxiliary cells is not present (Figure 4B).
Abortive auxiliary cells may generate non-functional goni-
moblast cells (Figure 4C). Mature cystocarps are located in
the center of compressed axes, showing a central area with
empty filiform networks (Figure 4D). Mature cystocarps
contain carposporangia and secondary gonimoblast fila-
ments that grow among them and reach the outer cortex
(Figure 4E). A stretched network of medullary cells and fili-
form gonimoblast cells bearing carposporangial chains are
located in the center (Figure 4F) or at the periphery of
mature cystocarps (Figure 4G and H). Putative spermatangia
(Figure 4I) are cut off from terminal cortical cells at the tip of
female gametophytes bearing cystocarps. Tetrasporangial
thalli were not observed.

Table 1 provides a comparison of morphological
characters among closely related species (Chondrus
verrucosus, C. retortus, C. elatus) and the original
descriptions of C. ocellatus (Holmes 1895) and C. “ocella-
tus” in Hawai‘i (Abbott 1999), C. verrucosus (Mikami 1965),
C. retortus (Matsumoto and Shimada 2013) and C. elatus
(Holmes 1895).

3.2 Phylogenetic, sequence divergence, and
species delimitation analyses

The rbcL, EF2, and psbA gene sequences of Hawaiian speci-
mens correspond to sequences of type specimens of Chond-
rus retortus (Figures 5, 6, and 7). For UPA and COI (Figures 8
and 9), sequences of Hawaiian Chondrus cluster in a clade
with previously mislabeled C. “ocellatus” (=C. retortus).
Earlier in 2014, our comparisons of sequences of short
fragments of rbcL and ITS1 of the Hawaiian Chondrus with
sequences on NCBI GenBank database, were inconclusive
because of inadequate sequence length and low variability
within the region.

Species delimitation analyses fromASAP arewithin the
species C. retortus for four genes and we can infer that the
Hawaiian Chondrus is C. retortus and not C. ocellatus. A
total of 10 species were delimited using the rbcL marker
(C. yendoi, C. armatus, C. pinnulatus, C. crispus, C. elatus,
C. verrucosus, C. retortus, C. giganteus, C. ocellatus, C. nip-
ponicus). For the EF2 gene, ASAP delimited six known spe-
cies (C. crispus, C. retortus, C. verrucosus, C. elatus,
C. ocellatus, and C. giganteus). No sequences are available
for C. yendoi, C. armatus, C. pinnulatus, and C. nipponicus
for the EF2 marker. For the psbA marker, ASAP delimited
six species (combined C. retortus and C. verrucosus, C. ela-
tus, C. giganteus, C. ocellatus, C. yendoi, C. crispus). No se-
quences are available for C. nipponicus, C. pinnulatus,
C. armatus for the psbA marker. For UPA, ASAP delimited

Figure 3: Structure of Chondrus retortus. (A) Longitudinal sections through pinnule (at left) and transverse sections through roundish-flattened stalk (at
right). Note lack of constriction at point of insertion. Scale bar = 500 μm. (B) Cross section throughmain branch showing dense aggregation of medullary
filaments. Scale bar = 200 μm. (C). Periclinal section showing dense aggregation of medullary filaments with a few enlarged stellate cells (arrow). Scale
bar = 50 μm. (D) Cross section through blade showing cortex and densemedulla. Scale bar = 100 μm. (E) Longitudinal section though region shown in (D).
Scale bar = 100 μm. (F) Periclinal section showing sparse filiformmedullary filaments (arrow) in center of blade. Scale bar = 20 μm. (G) Longitudinal section
through pinnule at left showing regular arrangement of medullary filaments, and scarcity of secondary filaments. Scale bar = 100 μm. (H) Oblique
periclinal section at apical region of pinnule showing abundance of conjunctor cells issued from intercalary cells forming secondary pit connections
(arrow) just below thallus surface. Scale bar = 100 μm.

R.P. Kittle et al.: Chondrus retortus in Hawai‘i 5



taxa into five species (the Hawaiian and Chinese “C. ocel-
latus,” C. elatus, C. giganteus, C. yendoi, and C. pinnulatus).
No UPA gene sequences were successfully generated for
C. ocellatus, C. crispus, C. verrucosus, C. armatus, and
C. retortus. However, we used data available on NCBI
GenBank for UPA. For COI, ASAP delimited taxa into 10 taxa
(C. yendoi, C. pinnulatus, C. armatus, C. crispus, C. retortus,
C. verrucosus, C. elatus, C. giganteus, C. ocellatus, and
C. nipponicus).

From the 23S UPA dataset, there is a 100 % match of
C. ocellatus ARS04629 and ARS00883 (Hilo, Hawaii) with
voucher LAF 7580 of Chondrus retortus, collected in the same
locality. In the COI dataset, C. ocellatus ARS00883 and
C. ocellatus haplotype 16 (both Hawaii samples from the
same locality) show a 100 %match, and both exhibit a 99.8 %
match with C. ocellatus mbccc36 (Huiquan Bay, Qingdao);
therefore, this close match of Hawaiian and Chinese
Chondrus specimens indicates that C. retortus also occurs in

Figure 4: Structure of Chondrus retortus. (A) Abortive procarps scattered in cortex. Longitudinal section. Note the lack of envelope around auxiliary cells.
Scale bar = 100 μm. (B) Abortive auxiliary cell with degenerating protrusions, and medulla with sparse medullary filaments. Longitudinal section. Scale
bar = 100 μm. (C) Abortive auxiliary cell with non-functional gonimoblast cells, and medulla with dense aggregation of medullary filaments (arrow).
Longitudinal section. Scale bar = 100 μm. (D) Mature cystocarp located in center of compressed axis, showing central area with empty filiform network.
Cross section. Scale bar = 200 μm. (E) Mature cystocarp containing carposporangia and secondary gonimoblast filaments (arrow) that grow among them
and reach the outer cortex. Cross section. Scale bar = 75 μm. (F) Stretched network of medullary cells and gonimoblast cells bearing carposporangial
chains (arrow) in center ofmature cystocarp. Periclinal section. Scale bar = 50 μm. (G) Stretched network of medullary cells and gonimoblast cells bearing
carposporangial chains (arrow) at periphery of mature cystocarp. Periclinal section. Scale bar = 50 μm. (H) Mixture of medullary filaments and filiform
gonimoblast filaments bearing carposporangia (arrow). Periclinal section. Scale bar = 50 μm. (I) Putative spermatangia (arrow) produced from terminal
cortical cells at tip of female gametophyte bearing cystocarps. Cross section. Scale bar = 7.5 μm.
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Table : Comparison of morphological characters among Chondrus species, including the type descriptions of C. ocellatus and C. retortus.

Chondrus retortus
Hawaii

Chondrus “ocellatus” Chondrus
ocellatus

Chondrus
verrucosus

Chondrus retortus Chondrus elatus

Reference(s) This study Abbott () Holmes (),
Mikami (),
Brodie et al.
()

Mikami () Matsumoto and
Shimada ()

Holmes (),
Mikami ()

Plant length
(cm)

Up to . To . .–.
(reported as –
in. tall)

– – .–.
(reported as – in.)

Branching Subdichotomously to
irregularly, branching
 or  times

Subdichotomously to
irregularly

Twice to thrice
forked from base

– times dichoto-
mously branched,
very regularly to
irregularly divided

Branching –

times dichoto-
mously, with round
axils

Rarely branching
below middle,
arcuate and
divaricate

Cortex Consisting of roundish
cells that become stel-
late or irregularly sha-
ped in inner cortical
region

∼  µm thick, narrow
subcortex of rounded
cells

Thick composed
of – small
oblong to elon-
gated cells

– rows (ormore)
of small, elongated
or ellipsoidal cells

Composed of
roundish cells,
which become stel-
late to irregularly
shaped in inner
cortical region

– rows of small
oblong or elongated
cells; subcortical
cells – star-
shaped cells ar-
ranged in anticlinal
order

Medullary cells Very dense, with
sparse filiform medul-
lary filaments in the
center of the blade

Mesh-like at lateral
margins, becoming
elongate centrally and
periclinally (to  µm
thick)

Slender rhizoidal
cells, arranged
parallel to the
frond; .– µm
in diameter and
– µm in
length

Very thick,
composed of
slender cell rows

.– µm in
diameter

Consisting of some-
what swollen, mostly
rhizoidal cells mostly
arranged to the ho-
rizon to the surface
of the frond in lon-
gitudinal section

Tetrasporangia Not observed Abundant in mid-
sections of blade, –
mm diameter

Network among
medullary layer,
except central
medulla

Sori scattered on
upper part of
frond, as elliptical
or irregular spots
on surface view

Formed in shallow
medullae. Sori scat-
tered on both sides
of the middle to
upper portion of
fronds

Densely scattered on
upper branches

Cystocarps Located in center of
compressed axes,
commonly filling-up
the entire medullary
space

–mm wide, irregu-
larly present, occu-
pying up to % of
section

Surrounded by a
ring, giving ocel-
lated
appearance

Very large and
numerous. Wart-
like, strongly on
one side, –mm
wide

Formed on outer
side of canal-
iculation, scattered
over middle to
upper fronts

Slightly prominent
on one side, elliptical
to ocellated, scat-
tered over upper
branches, –mm in
diameter

Gonimoblasts Filiform and abundant Size not reported Size not reported Abundant goni-
moblast threads
connecting to
plentiful swollen
medullary cells

Size not reported Gonimoblasts abun-
dant composed of
extremely slender
cells that directly
connect to medul-
lary nutritive cells

Spermatangia Size not reported Size not reported Size not reported .–. µm in
diameter and
.–. µm in
length

.–. µm in
diameter and
.–. µm in
length

Size not reported

Reported
distribution

Richardson Ocean
Park, Hilo, HI; Leileiwi
Beach Park, Hilo, HI

Hawaii: Richardson
Ocean Park, Hilo, HI
and Shipman Estates,
Kea’au, HI

Type: Shimoda,
Izu Peninsula,
Shizuoka Prefec-
ture, Japan

Type: Inubozaki,
Chiba Prefecture,
Japan

Type: Enoshima,
Kanagawa Prefec-
ture, Japan;
Honghyeon-ri,
Namhae, Korea

Type: Enoshima,
Kanagawa Prefec-
ture, Japan
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Huiquan Bay. The sequence divergence analyses comparing
Hawaiian Chondrus retortus LAF 7580 for rbcL shows that
there is a 99.984 % similarity with the Chondrus retortus
voucher specimen TNS:AL:180698 (Kisami, Shimoda, Japan).
Thus, the Hawaiian “Chondrus ocellatus” samples should be
treated as C. retortus, as well as the voucher mbccc36
“C. ocellatus” samples from China.

Sequence divergence analyses comparing Hawaiian
Chondrus LAF 7580 with other C. retortus specimens were

<0.4 % for rbcL, <0.6 % for EF2, <0.1 % for psbA, <0.8 % for
UPA, <0.2 % for COI (Tables S2–S6). For these same gene se-
quences, interspecific divergences between Hawaiian
Chondrus LAF 7589 and its closest relative, C. verrucosus,
were greater than intraspecific divergences and ranged
from 0.56 % (psbA) to 2.4 % (COI). Sequence divergence be-
tween Hawaiian Chondrus LAF 7580 and all other Chondrus
species was greater than these intraspecific and interspecific
divergences (Tables S2–S6).

Figure 5: Maximum likelihood analyses of rbcL sequences (1446 bp). Numbers at branches indicate bootstrap values out of 1000 replicates. *Denotes full
support. The results of assemble species by automatic partitioning (ASAP) species delimitation are indicated by vertical bars.
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4 Discussion

Biogeographical, taxonomic, and ecological studies have
treated the Chondrus in Hawai‘i as C. ocellatus (Abbott 1999;
Hu et al. 2015; McDermid and Stuercke 2003; Sherwood et al.
2010; Sherwood and Guiry 2023). However, our study shows
that after comparing the anatomy,morphology, and five gene
sequences from type material (isotypes) or thalli from type
habitats (topotypes) in Japan, the Hawaiian species is not
Chondrus ocellatus, but C. retortus. Unlike the descriptions of
type material of C. retortus, the Hawaiian C. retortus is
commonly pinnulate, varies significantly in density of sec-
ondary medullary filaments (sparse to compact) within a
specimen, and has mature cystocarps filling up the entire
medullary space. However, there are many overlapping
morphological characters among closely related species (Ta-
ble 1), so cautionmust be usedwhen interpretingmorphology
alone for species identification. Fredericq et al. (1992) used
developmental reproductive traits to distinguish species with
overlapping vegetative traits. Future studies involving
morphological comparisons within the genus Chondrusmust
include longitudinal and periclinal sections to better under-
stand the developmental morphology.

There are currently 11 taxonomically accepted species
within Chondrus (Guiry and Guiry 2023). Ten of the species
have at least two molecular markers available on NCBI
GenBank. Many NCBI GenBank sequences labeled “Chond-
rus ocellatus” have been historically misidentified and
lumped together, without proper comparisons with the type
specimens, leading to paraphyly in gene trees or mis-
interpretations in phylogeographic analyses. Our study
demonstrates how DNA sequences can clarify the identity of
misidentified samples. Kang et al. (2020) reported C. retortus
in Honghyeon-ri, Namhae, Korea based on the rbcL gene. It is
possible that this species has been established in other
localities around the Pacific region, but historically mis-
identified and labeled as C. ocellatus.

Chondrus retortus is known from Japan, South Korea,
and perhaps China (Guiry and Guiry 2023; Kang et al. 2020;
Matsumoto and Shimada 2013; Yoshida et al. 2015), and has
been established in east Hawai‘i Island since at least 1900 (as
Chondrus ocellatus; Abbott 1999). The earliest collection of
Chondrus in Hawai‘i wasmade byWilliam Setchell in 1900 at
Seaconnet Point, now known as Kēōkēa in Hilo, Hawai‘i
Island (UC622609), and the dried herbarium specimens are
recognizable as C. retortus (Figure S2). Since then, many

Figure 6: Maximum likelihood analyses of EF2 sequences (1515 bp). Other details as in Figure 5.
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Figure 7: Maximum likelihood analyses of psbA sequences (947 bp). Other details as in Figure 5.

Figure 8: Maximum likelihood analyses of 23S (UPA) sequences (369 bp). Other details as in Figure 5.
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phycologists have collected Chondrus in the same vicinity
along the rocky basalt shoreline (Figure S3). A few Bishop
Museum (BISH) herbarium specimens from O‘ahu and Maui
collected by non-phycologists are labeled Chondrus
(Figure S4, Table S7), but the thallus morphologies do not
seem to correspond to this genus and their gene sequences
have not been analyzed.

The Hawaiian Islands, because of their geographic
isolation but richmarineflora of over 660 species (Sherwood
and Guiry 2023), present a biogeographical enigma. How and
when C. retortus made the trek from its native population
range in the northwest Pacific to the Hawaiian Islands is
unknown. Other indigenous Hawaiian macroalgae with
disjunct distributions and cold-temperate water affinities
have been reported from the Northwestern Hawaiian
Islands in the subtidal zone (10 m and deeper) where water

temperatures are cooler than in the Main Hawaiian Islands
(McDermid and Abbott 2006), i.e. red algae: Crouania
magesshimensis (Abbott 1989) and Kallymenia sessilis
(Abbott and McDermid 2002), and several browns: Desmar-
estia ligulata, Nereia intricata, and Sporochnus moorei
(Abbott and Huisman 2003). In contrast, most non-native
macroalgal species in theMainHawaiian Islands are tropical
species that were intentionally introduced for commercial
cultivation in the 1970–1980s, e.g. Kappaphycus alvarezii,
Hypnea musciformis, or unintentional hitchhikers on the
hulls of ships from Guam in the 1950s, e.g. Acanthophora
spicifera (Coles et al. 1999; Conklin and Smith 2005; Eldredge
and Smith 2001; Padilla and Williams 2004). However,
Chondrus retortus is not a tropical species and probably was
not intentionally introduced. The small genetic divergence
between Hawaiian and Japanese specimens suggests that

Figure 9: Maximum likelihood analyses of COI sequences (616 bp). Other details as in Figure 5.
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C. retortus arrived in Hawai‘i relatively recently – in the last
few hundred years, not millions of years ago. Carlton (1987)
discussed major transoceanic marine biological invasions
around the Pacific Ocean, and stated that “major donor areas
are the northwest Pacific Ocean and the Australasian-
southern Asia-southwest Pacific region,” whereas “major
receiver areas for introduced [organisms] around the Pacific
Ocean are the Hawaiian Islands, the Pacific coast of North
America, and Australasia.” Long distance dispersal of ma-
rine species, such as macroalgae and invertebrates via
rafting on floating logs, pumice stones, and coral rubble in
the Pacific, has been reported, but the survival of these or-
ganisms was hypothesized to be low (Jokiel 1990). However,
Haram et al. (2023) documented diverse, living, coastal ma-
rine invertebrates on 70.5 % of thefloating debris sampled in
the eastern North Pacific Subtropical Gyre. If shallow-water,
benthic invertebrates can float, persist, reproduce, and
develop dynamic populations and communities in pelagic
waters far from their native shores, then coastal macroalgae
might similarly disperse and survive when suitable sub-
strata are present. In March 2011, the tsunami that hit the
Tōhoku region of eastern Japan, carried countless coastal
objects into the North Pacific Ocean, and by 2012, living,
coastal Japanese marine organisms, including macroalgae,
were washing ashore in the Hawaiian Islands and North
America (Carlton et al. 2017, 2018; Haram et al. 2023). On the
tsunami debris that stranded along the northwest coast of
North America, Hanyuda et al. (2018) found at least 49
macroalgal species that were genetically identical to mem-
bers of populations of the Tōhoku region of Japan. In fact,
living Chondrus giganteus thalli were collected attached to
the transom (back wall at the stern of a boat) of the Japanese
tsunami-wrecked vessel, Sou-you, on the coast of Washing-
ton, USA (Carlton et al. 2013). Modern dispersal patterns of
tsunami debris (Maximenko et al. 2018) show that the nat-
ural processes for transport, e.g. tsunamis, storms, buoyant
objects, and currents continue to occur today as they might
have in the past.

Since red algal spores do not have long competency
periods (Norton 1992) and probably no ability for indepen-
dent long-distance dispersal across the Pacific, Chondrus
retortus thalli may have migrated, via rafting on natural
floating material in the Kuroshio Current and the Kuroshio
Extension (Qiu 2002) to the North Pacific, into the North
Pacific Convergence Zone and its eastern tip called the
“Great Pacific Garbage Patch” (Moore and Phillips 2011),
which periodically ejects flotsam towards the Hawaiian
Islands (Berg et al. 2024). Evidence for this route is currently
visible in the plastic debris and derelict fishing nets that
accumulate onwindward reefs in theHawaiian Archipelago,

as well as leeward shores subject to the islands’ wake effect
(De Falco et al. 2022; Xie et al. 2001).

Anothermeans for Chondrus retortus to immigrate to east
Hawai‘i Island could have been on boat hulls (Godwin 2003).
Prior to Captain Cook’s arrival in the Hawaiian Islands in 1778,
Japanese boats caught in typhoons or storms may have drifted
to the Hawaiian Islands (Braden 1976). Whaling vessels that
docked in Hilo, Hawai‘i over 200 years ago traveled to and
from Japan primarily in early January to late April, with less
frequent visits between mid-October and the end of December
(Lebo 2010). Even before whaling vessels, dozens of successful
voyages to Hawai‘i from Japan were made between 1600 and
1778 based on shogunate shipping records (Braden 1976). Many
ships carrying Japanese immigrants sailed from Japan to
Hawai‘i in the 1800s and early 1900s. The first official group
of Japanese immigrants sailed from Yokohama, the capital of
Kanagawa Prefecture, to Honolulu in 1868. The type locality of
C. retortus is Enoshima, Fuijisawa, Kanagawa Prefecture. The
trans-Pacific trip in the 1800s would have taken two months
from Japan to Hawai‘i and, although thalli or spores would
probably not have survived in the ballast water, they might
have persisted in crannies in the wooden hulls. Similarly,
Carlton and Eldredge (2009) proposed that Japanese transport
ships in the late 1800s introduced the Japanese littleneck clam,
Venerupis philippinarum, which was first documented in the
Hawaiian Islands in the early 1910s.

Upon arrival on Hawaiian shores, Chondrus retortus
survival might have been influenced by light, temperature,
salinity, and nutrients. Cold seeps created by submarine
groundwater discharge occur in some coastal areas on the
Hawaiian Islands and may have helped the cold-temperate
immigrant to persist in a tropical environment, although in
spatially restricted populations. Submarine groundwater
discharge on the east coast of Hawai‘i Island creates local-
ized plumes of colder, brackish water ranging from 20.5 to
25.26 °C that can be nutrient-rich (Hart 2016; M & E Pacific
1980; Nakoa III 2022; Waiki 2022).

Chondrus retortus on Hawai‘i Island may have been the
product of one introduction event leading to low genetic di-
versity – an example of the Founder Effect (Mayr 1942). Low
genetic variability within and among populations on east
Hawai‘i Island may also indicate strong selection on pheno-
types. Japanese Chondrus species exhibit a wide variety of
morphological characters whichmay be genetically based and/
or environmentally induced (Figures S5–S7). Environmental
differences between Hawaiian and Asian habitats may explain
the slight morphological differences between Hawaiian speci-
mens and Chondrus retortus specimens from Japan (Figure S5).

Ancestral range reconstruction, as well as comparison of
different models of range evolution and habitat distribution
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models, should be examined to better understand the bioge-
ography of populations of Chondrus retortus, especially in
unusual habitats like Hawai‘i, and the genus Chondrus as a
whole. Although several studies on C. verrucosus have
explored the subtle, but significant, differences in spore
ecophysiology, thallus biomechanics, and phenology which
may contribute to the distribution and abundance of
isomorphic 1N and 2N life-history stages (Bellgrove and Aoki
2006, 2008, 2020; Bellgrove et al. 2019), information on these
traits inC. retortus inHawai‘i is lacking. Future studies should
also investigate the environmental tolerances, including
nutrient loading simulations, of C. retortus to predict how this
species may, or may not adapt, to future climatic and
anthropogenic changes around the Hawaiian Islands.

This study emphasizes the value of using multi-gene loci
comparisons and the necessity of comparing results with
known type material or specimens from type localities. The
300 bp fragments of rbcL and ITS1 of the Hawaiian Chondrus
sequenced in 2014 compared with sequences on NCBI Gen-
Bank database, erroneously suggested that our specimens
were C. crispus from the Atlantic (ITS) or C. ocellatus (rbcL),
but sequence length and lack of variability within the region
did not allow any phylogenetic conclusions with known type
specimens. Previous taxonomic and phylogeographical
Chondrus studies used only one or two molecular markers
that were not always the same, which made inter-specific
comparisons difficult (Table S8), thus we re-extracted DNA
from holotypes, isotypes, and topotypes to compare five gene
sequences to the Hawaiian specimens. In our study of Ha-
waiian Chondrus, we combined classical morphological
comparisons of specimens, especially type material, with
exhaustive use ofmodernmolecular data, all enhanced by the
cooperation of phycologists around the Pacific to solve a long-
standing taxonomic puzzle. Molecular methods in combina-
tion with phylogenetic systematics and paleo- and modern
oceanographic data, may help define ancestral populations
and dispersal pathways and decipher the biogeographic
mystery of many species in the Hawaiian Islands.
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