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ABSTRACT

Lifespan is a fundamental parameter of population biology and central to wildlife
management. Lifespan limits individual reproductive capacity, probability of
mortality, population growth rates, dispersal capacity, and viability. The lifespan of
most species is unknown and this limits objective wildlife management. On a
genomic level it has been shown the CpG density in gene promoters is both
associated and predictive of lifespan. In this chapter, we discuss the development of
lifespan clocks that produce estimates of animal lifespans from genome sequences.
We also discuss the biological and evolutionary mechanisms of CpG density and
lifespan. DNA can be readily obtained from species and a lifespan prediction may
provide life-history traits. Knowing the lifespan of a species can provide better
resources for wildlife management. Our research shows the benefit of using DNA to
predict the lifespan of species, such as in predicting lifespan in species that outlive
researchers or are extinct. It also provides insight into the evolutionary mechanism

of the variability of species lifespan.

INTRODUCTION

Maximum lifespan is a fundamental parameter for management of any wild animal
species. Maximum lifespan can be used to assess both extinction risk and the spread
of invasive species (IUCN 2008; Tabak et al. 2018). Unfortunately, lifespan for most
species is either unknown or is estimated from a limited number of individuals. In
many cases, the individuals have been kept captive and this may lead to lifespans




that are artificially extended beyond the normal wild limit. The problem is
intensified with long-lived species as they may outlive a generation of researchers.
The lack of lifespan information makes it difficult for wildlife managers to decide on
appropriate management for most species.

Mortality rates, life expectancy, and longevity (life expectancy at birth) are all
determined by maximum lifespan (Hsieh 1991). These parameters are used in a
broad spectrum of population biology analyses and minute changes can influence
wildlife management. It is imperative the appropriate value for maximum lifespan
is used as it can potentially impact the management of a species. For example, in
fisheries catch limits are highly dependent upon natural mortality rates. Catch
limits can be difficult to determine when mortality rates are poorly defined (Then et
al. 2014; Kenchington 2014). The orange roughy (Hoplostethus atlanticus) population
collapsed due to a poorly defined lifespan and consequent excess harvesting (Boyer
etal. 2001; Clark 2001). Mortality rates can be determined using lifespan, preventing
similar situations in the future (Hoenig 2005). A rapid approach for calculating
fundamental parameters of life history is critical to better manage populations in a
rapidly changing global environment with more species to manage than can be
resourced (Healy et al. 2019).

Of the many characteristics of the genome, cytosine-phosphate-guanine (CpG)
density is one of the less explored (Box 6.1). There are four nucleotide letters used
in DNA, and 16 possible combinations of pairs. Within vertebrate genomes, CpG sites
are the fastest evolving dinucleotides, and their density proximal to genes is under
strong evolutionary selection. Similarly, lifespan is a trait that evolves under
unusual selective pressure with wide variability in vertebrates and is of great
interest in both ecological contexts and human health regarding ageing.

In this chapter, we demonstrate the lifespan clock as a predictor of lifespan in
vertebrates (Mayne et al. 2020). This chapter focuses on the construction of the first
lifespan clock and gives example applications to bowhead whales and marine
turtles. We also discuss potential future directions of the work presented and how
the reader can develop their own lifespan clock on species not covered in this
chapter. This may include non-vertebrate animal groups. We also discuss some of
the evolutionary aspects and other genomic features associated with lifespan.

Box 6.1: The evolution of CpG sites

Many of the intrinsic factors that determine the lifespans of species are genomic (Kenyon
2010). CpG sites in the genome host epigenetic DNA methylation that changes with age
unlike nucleotide sequence (see Chapter 7). In other words, the ‘C’ within a CpG site can be
either methylated or unmethylated, and the state of methylation changes over the lifespan of an
individual (Kanherkar et al. 2014). DNA methylation suppresses gene expression, so intergenic
regions and parts of the genome that must be silenced are highly methylated in vertebrates. In
contrast, parts of the genome that must be active often have very low levels of DNA
methylation, most notably in promoter CpG islands. CpG islands exhibit both genetic and
epigenetic conservation across the vertebrate radiation. In fact, experiments have shown that
CpG density alone is predictive of methylation level (Long et al. 2016). This epigenetic mark
also has evolutionary consequences. A methylated C can become deaminated over
evolutionary time and transition to T, creating a TpG site. Comparative genomics reveals that
CpG sites mutate away at a higher rate than any other dinucleotide because of the high
frequency of methylated CpG sites in the genome. The result is that the CpG dinucleotide has
the lowest observed vs. expected frequency within vertebrate genomes (Fig. 6.1). The case for
the outsize importance of the CpG sites is illustrated in humans and our nearest relative, the
chimpanzee. The genetic difference between us and chimps averages 0.92% per base pair
across the genome; however, at CpG sites that rate jumps to over 15%. In other words,
between us and chimps, there is 1 SNP out of a 100 bases on average, but that rises to 1 out
of 7 at CpG sites. Because CpG sites mutate rapidly and host DNA methylation that ultimately
governs gene expression, they are the both a primary cause of genetic variation and the
substrate for both epigenetic and gene regulatory changes (Antequera 2003; Deaton and Bird
2011; Bell et al. 2012).
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Fig. 6.1. Mutation rate isn't equal for every type of base. The genome is less GC rich than expected by
chance and there are fewer CpG sites than any other pair of nucleotides.




APPLICATION

The construction of the lifespan clock builds upon two domains of research. The first
is the work by McLain & Faulk (McLain and Faulk 2018). McLain & Faulk drew upon
multiple databases including the Eukaryotic Promoter Database (EPD), a source of
promoter sequences (Dreos et al. 2017), the National Center for Biotechnology
Information (NCBI) genomes database (https://www.ncbi.nlm.nih.gov/genome/); and
the Animal Ageing and Longevity Database (AnAge), a source of lifespans of species
(Tacutu et al. 2018). McLain & Faulk found the CpG density in 5% of all promoters
significantly correlated with lifespan in mammals.

The second research domain is the methodology commonly used with epigenetic
clocks (Chapter 7). Epigenetic clocks have been developed for a wide variety of
vertebrates and can predict age from the DNA methylation levels of selected CpG
sites (De Paoli-Iseppi et al. 2017). One of the common methods of developing an
epigenetic clock is using an elastic net regression model (Friedmanet al. 2010).
Briefly, as it is outside the scope of this chapter, an elastic net regression model can
fit a linear model and identify the minimum number of predictors required to
predict an outcome. In the case of the lifespan clock the predictors are CpG densities
in promoter sequences and the outcome is lifespan. The elastic net regression model
is ideal for handling the data presented in this chapter as it can work with many
predictors and small sample size. The model of Mayne et al. identified 42 promoters
conserved across vertebrates as the minimum number of markers required for
accurate prediction of lifespan (Mayne et al. 2019). These 42 promoters encompass
what is referred to as the lifespan clock.

Example: Lifespan prediction of the bowhead whale by genomic analysis

The wildlife management of long-lived species that do not have known lifespan
benefits greatly from the lifespan clock. Although it is ideal to use the lifespan clock
with reference genomes (see Chapter 9), it is possible to predict lifespan using basic
molecular approaches. In this chapter we give an example of how to predict lifespan
with and without a reference genome.

In (maximum lifespan) = -4.38996 + (2.57328x4.65) + (-0.92888x4.65) + 2.33508

maximum lifespan = ¢>>°158 = 268 years

Table 6.1. The coefficients to be inputted into the lifespan prediction equation for each vertebrate
class.

Class a b

Aves -0.90323 2.14857

Fish 2.14632 -6.58228
Mammalia -0.92888 2.33508

Reptilia -0.48958 1.17281

Bowhead whales are thought to be the longest-lived mammal (Keane et al. 2015).
The oldest aged bowhead whale was found to be 211 years old (George et al. 1999).
This 211-year-old individual showed no pathological features of age-related
diseases, suggesting they could potentially live longer (George et al. 1999). The
bowhead whale has a reference genome that can be used for lifespan prediction
(Keane et al. 2015). Lifespan prediction with a reference genome can occur in three
main steps. First, the 42 unique promoter sequences are identified using a Basic
Local Alignment Search Tool (BLAST). BLAST can rapidly identify similar sequences
within the genome. The sequences of the promoters used by BLAST are found in the
link within the Resources section of this chapter. The second step involves
calculating the CpG density. CpG density is the total number of CpG sites divided by
the length of the BLAST hit. The final step is to input the CpG densities into the
lifespan prediction equation, shown below.

In (maximum lifespan) = -4.38996 + 2.57328x + ax + b

where x is the raw summed CpG density weight per sample and a and b are
coefficients relating to the vertebrate class (Table 6.1).

For each promoter the CpG density is multiplied by a unique coefficient that was
calculated during the model development. These coefficients can be found in a link
within the Resources section. The sum of the product of the CpG densities and
coefficients are represented in the equation by x. For the bowhead whale x = 4.65.
We can then input x and the mammalian specific coefficients (Table 6.1) into the
lifespan equation.

As demonstrated with the bowhead whale, a reference genome can provide a
straightforward approach to predict lifespan. BLAST is a common bioinformatic tool




used to search for similar sequences. CpG densities can be readily calculated once
the promoter sequences have been identified and using basic algebraic methods,
lifespan can be predicted using the equation above.

Example: Marine turtle lifespan

Marine turtles are both slow growing and long-lived, with the potential to outlive a
generation of researchers (Musick and Limpus 1997). Lifespan values for marine
turtle species have the potential to provide better predictions for population
growth, survival probabilities, and risk of extinction (Hoenig 2005). In this example
the lifespans of marine turtles that occur in Australian waters, but lacking a
reference genome, was predicted (Mayne et al. 2020). First, tissue from each marine
turtle was collected for DNA extraction. Any tissue from a somatic cell can be used
for lifespan estimation. Of the six marine turtles occurring in Australian waters only
the Green sea turtle (Chelonia mydas) has a reference genome and lifespan estimate
in the AnAge database (Wang et al. 2013; Tacutu et al. 2018).

The green sea turtle genome was used to BLAST the lifespan promoters and to
design PCR primers. Primers were then optimised using DNA from each marine
turtle species. By optimising primers for closely related species negates the need to
have a reference genome for each species. PCR was used to amplify the promoters of
the marine turtles that were then subject to Sanger sequencing. Sanger sequencing
enables to calculate the CpG density of each promoter. Once the CpG density has
been determined for each promoter the process above can be used without
deviation. Table 6.2 details the lifespan prediction for each marine turtle species. In
this chapter we have shown how lifespan can be predicted with and without a
reference genome. The bowhead whale and marine turtles are examples of long-
lived species where access to estimates of their lifespan can contribute significantly
to their management.

Table 6.2. The lifespan predictions of marine turtles using sanger sequencing to determine CpG
density.

Species Prediction
Leatherback sea turtle (Dermochelys coriacea) a0.4
Loggerhead sea turtle (Caretta caretta) 62.8
Olive Ridley sea turtle (Lepidochelys olivacea) 54.3
Hawksbill sea turtle (Eretmochelys imbricata) 53.2
Flatback sea turtle (Natator depressus) 50.4

FUTURE DIRECTIONS

Lifespan prediction from genomics has many future directions with implications
that could benefit the management of wildlife. The lifespan clock was developed
with five classes of vertebrate species. Multiple lifespan clocks can be developed for
specific taxonomic groups (Box 6.2). Lifespan clocks calibrated to taxonomic groups
of interest may increase the accuracy of clock predictions for species within these
groups. One of the challenges of developing lifespan clocks for a broader range of
species is the lack of reliable lifespan data for calibration. Lifespans are often
difficult to obtain due to the longevity of long-lived species. A workaround may be
to develop a lifespan clock on short-lived species that can be held in captivity. The
subsequent clock that is developed could potentially be extrapolated to long-lived
species. Granted, extrapolating any model beyond the confines of the training can
result in false-positives and false-negatives (Forbes et al. 2008). It should be noted
that the purpose of any model is to provide guidance to a challenge or problem. A
lifespan clock may not be able to provide the exact number of years a species can
live to but may be able to provide potential brackets or ranges.

So far in this chapter, the reader has had to have significant bioinformatic and
machine learning knowledge to determine lifespan for their species of interest.
However, it should be acknowledged that most researchers may not have the time or
expertise to carry out the analysis. A future project for this work is to automate the
method, through a web-based upload. Here, users could upload the reference
genome and receive a species lifespan prediction. This would provide simple
efficient method alternative to performing the bioinformatic analysis by oneself.

Box 6.2: How to develop a novel lifespan clock



Step 1: Assemble a dataset of known lifespan species with reference genomes.
There are three components that are required to develop a novel lifespan clock: reference
genomes; well-defined lifespans, most likely to be obtained from sources such as AnAge
(Tacutu et al. 2018), promoter sequences of the group of species that will be used to
determine CpG density. Some examples of promoter databases include EPD and the
Ensembl genome database (Hubbard et al. 2002; Tacutu ef al. 2018).

Step 2: Determine promoter CpG density.
Once the list of species with reference genomes and well-defined lifespans has been
collated, the next step is to determine the CpG density of the promoters for each species.
This can be done using software such as BLAST. In the original studies, a BLAST hit was
considered with an identity of identity >70% (McLain and Faulk 2018; Mayne et al. 2019).
Once the BLAST hit sequences have been determined, CpG density can be calculated by
dividing the frequency of CpG sites by the BLAST hit length. This part is the most
computationally expensive as it requires the download of potentially large genomes and
creating temporary BLAST databases to search for promoter sequences.

Step 3: Machine learning to develop a lifespan clock
The final part to develop a lifespan predictor is to calibrate and test the model. Typically,
70% of the samples should be randomly assigned to a training dataset and the remaining
to a validation dataset. Since lifespan is a continuous outcome, a regression algorithm can
be used. In the original study, an elastic net regression, implemented in the glmnet R
package was used to develop the lifespan predictor (Friedman et al. 2010; Mayne et al.
2019).

This method is first applied to the training dataset to identify the promoters that can predict
lifespan. These promoters are then tested on the validation data. The performance of the
model can be assessed by comparing the known and predicted lifespans with Pearson
correlations, absolute and relative error rates. It is important to ensure the model is not
overfitted. This can be done by comparing the correlations, absolute and relative error rates
between the training and validation data. Ideally, no difference should be observed. The
method described here can be carried out on any taxonomic group to develop novel
lifespan clocks.

DISCUSSION

Can a lifespan clock be developed for invertebrates?

CpG methylation is sparse within invertebrate genomes, despite their overall
greater genome wide CpG density. To understand why, it is helpful to examine
mutation in the context of evolutionary pressure. The ancestral animal genome,
prior to the divergence of Chordata from other phyla, probably had CpG sites in
similar frequency to all other dinucleotides (Fig. 6.2) Within the newly evolved

vertebrate clade, DNA methylation also evolved as a means of gene control and
transposon suppression (Box 6.3). Therefore, most CpG sites became methylated,
except for ones in the promoter regions nearby genes since that would have
suppressed important gene expression, CpG sites near genes remained
unmethylated and were spared from deamination mutations. Over time, the
methylated CpG sites outside of promoters mutated rapidly away leaving the
present pattern of CpG islands within vertebrates. Thus, the accumulation of CpG
islands was a consequence, not a cause, of evolution (Sharif et al. 2010). For this
reason, it is unlikely that a ‘lifespan clock’ could be built for species with very sparse
DNA methylation using CpG density.
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Fig. 6.2. Ancestral animal genomes had sparse methylation with no deviation in expected CpG site
frequency. During vertebrate evolution, heavy DNA methylation became standard at CpG sites. Due to
rapid mutation of methylated CpGs, the genome lost most CpG sites outside of promoter CpG islands
where they are generally unmethylated. Note that CpG sites within coding regions are under negative
selective pressure to avoid coding substitutions in amino acids.

Box 6.3: The ageing epigenome

As animals age, the strongly defined epigenetic pattern of DNA methylation degrades, with
most highly methylated CpG sites gradually becoming demethylated, while relatively
unmethylated CpG islands increase in methylation. In fact, this pattern is predictable enough
that careful selection of CpG sites has allowed the development of epigenetic clocks to
measure the ageing process by the change in methylation over chronological time (Wagner




2017). Since the methylation of CpG sites increases as an animal ages, the evolution of CpG
sites becomes crucial to understanding ageing. Within mammals, coding regions of genomes
are quite similar, yet lifespan varies widely. The epigenetic clock ticks according to longevity.
Evidence supporting this case has been shown with mice carrying a complete copy of human
chromosome 21. When epigenetic ‘clock sites’ on hum_chr21 were assessed, the human
chromosome aged at the rate of the host mouse, suggesting that trans-factors govern ageing
rate (Lowe et al. 2018). Similarly, dog epigenomes age at drastically different rates depending
on the lifespan of the breed, despite being extremely genetically similar overall. Therefore,
strong evidence indicates that ageing-associated methylation marks are a dynamic molecular
readout of lifespan variation among different mammalian species.

What is the role of CpG density with lifespan?

Very CpG dense promoter regions tend to be hypomethylated and resist the natural
increase in DNA methylation as we age. We hypothesise that CpG density itself is
under selective pressure in some genes to maintain expression stability for a long
life, in effect ‘guarding’ genes necessary for the continued homeostasis of organisms
during their extended lifespan (Gardiner-Garden and Frommer 1987; Antequera
2003; Mayne et al. 2019). Ultimately, CpG density links both genetic and epigenetic
variation across both evolutionary time across species and within the lifespan of a
single individual.

What other genomic features are associated with lifespan?

The clustering of genomic features in general has been understudied with respect to
lifespan. For example, CpG density itself has only recently been examined in
relation to gene function. A recent paper by Boukas et al. demonstrated that CpG
density is highest in genes most intolerant to loss of function (LOF) mutations
(Boukas et al. 2020). They conclude that ‘high CpG density is not merely a generic
feature of human promoters but is preferentially encountered at the promoters of
the most selectively constrained genes, calling into question the prevailing view
that CpG islands are not subject to selection’.

Similarly, other genomic features besides coding regions should be assessed for
their roles in the evolution of lifespan. The best example of this is the activity and
consequences of transposons. While animals all have in the range of 10 to 20
thousand genes, the number of transposons in humans and mice is on the order of 4
million, or about 40-50% of the genome (Canapa et al. 2015). Interestingly, though
most animals have about the same proportion of transposons, it appears that each

clade has a unique expansion and complement of transposons (Platt et al. 2018). They
also cluster in the genome in non-random ways and affect nearby gene expression,
and are understudied in terms of lifespan due to difficulty in sequence mapping.
Other features under natural selection for density have been studied but not in the
context of lifespan include transcription factor motifs, SNP density in molecular
evolution, target motifs for iron-binding proteins, and even olfactory receptor DNA
binding motifs (Zhao et al. 2003; Sonntag et al. 2004; Kim et al. 2007; Faulk and Kim
2009).

CONCLUDING REMARKS

Rapid prediction of lifespan has the potential to advance many aspects of wildlife
management. A lifespan clock reduces the need to monitor species from birth to
death to obtain a lifespan estimate. Therefore, parameters relating to population
dynamics can be immediately determined and evaluations of populations more
accurately assessed. Advancements in lifespan clocks are still required, including
expanding into invertebrates and increasing automation. In addition, more work is
required to better understand the evolutionary aspects and basic biology relating
lifespan and the genome.

DISCUSSION TOPICS

1. What is maximum lifespan? Discuss the definitions of lifespan, and how different
definitions may affect interpretation of the estimates provided by lifespan-
predicting models.

2. What considerations need to be made when assembling genomes and lifespan
data for calibration of a lifespan prediction model?

3. Lifespan is one life history characteristic that can be estimated from genome
sequence analysis. What other life history parameters do you expect might be
predictable from similar models?

RESOURCES

Promoter sequences and coefficients to predict lifespan:
https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-019-54447-
w/MediaObjects/41598_2019_54447_MOESM3_ESM.xlsx
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