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1.  INTRODUCTION

A central feature of protected species conservation
and management is the use of demographic models
to evaluate population status and trends and inform
management decisions. Yet, demographic models for
long-lived, late-maturing migratory marine species
such as sea turtles are notoriously difficult to parame-
terize due to their natural history, where long-term

inaccessibility can limit data collection (Lascelles et
al. 2014). For example, while sea turtle nest protec-
tion programs have in some cases provided robust
counts of nests and nesting adult females through
time, inadequate knowledge of juvenile abundances
and demographic or vital rates have impeded under-
standing of the causes of trends (National Research
Council 2010). Quantifying the means and variances
in sea turtle vital rates, especially growth rates and

© The authors 2021. Open Access under Creative Commons by
Attribution Licence. Use, distribution and reproduction are un -
restricted. Authors and original publication must be credited.

Publisher: Inter-Research · www.int-res.com

*Corresponding author: mdramirez@uri.edu

Global synthesis of sea turtle von Bertalanffy
growth parameters through Bayesian 

hierarchical modeling

Matthew D. Ramirez1,2,*, Tamara Popovska3, Elizabeth A. Babcock3

1Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97331, USA
2Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA

3Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 
Miami, FL 33149, USA

ABSTRACT: Knowledge of sea turtle demographic rates is central to modeling their population
dynamics, but few studies have quantitatively synthesized existing data globally. Here, we used a
Bayesian hierarchical model to conduct a meta-analysis of published von Bertalanffy growth
curve parameters (growth coefficient, K; asymptotic length, L∞) for chelonid sea turtles. We iden-
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parameter estimates. According to information criteria, the best model included a random effect of
species. The second best model also included latitude as a fixed effect, but RMU, parameter esti-
mation method, latitude, and sampled body size ultimately did not strongly influence the means
or variances of K and L∞ among studies. The apparent lack of RMU effect on parameter estimates
within species may be an artifact of the small number of RMUs with published growth parameter
estimates. The species-specific, and in some cases RMU-specific, posterior means and standard
deviations of K and L∞ from this study would be appropriate priors for future studies of growth in
chelonid sea turtles or for models of population dynamics. We highlight the need for expanded
study and synthesis of sea turtle somatic growth rates.
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age at maturation, therefore remain high-priority re -
search areas in sea turtle population ecology (Hamann
et al. 2010, National Research Council 2010, Rees et
al. 2016). Such information is fundamental to accu-
rately understanding and predicting the dynamics of
sea turtle populations in addition to prescribing man-
agement targets, quantifying sustainable biological
re moval levels, and evaluating likely responses to
management actions or environmental change scenar-
ios (Crouse et al. 1987, Crowder et al. 1994, Casale &
Heppell 2016, Piacenza et al. 2019).

As free-living sea turtles are nearly impossible to
age, somatic growth curves (i.e. size-at-age relation-
ships) have served as the principal mechanism by
which age, life stage duration, and age at maturity
are estimated and ultimately integrated into popula-
tion models (e.g. Crouse et al. 1987, Heppell et al.
1996, 2004, Chaloupka 2002, Mazaris & Matsinos
2006, Casale & Heppell 2016). Sea turtles are charac-
terized by rapid growth during the first few years of
life followed by monotonically decreasing growth
rates until maturity, at which point energy is redi-
rected to reproduction and growth becomes negligi-
ble (Omeyer et al. 2017, 2018). Although studies of
in-water life stages are dwarfed by those of adult
nesting females, somatic growth rates have been
measured across a wide range of populations through
capture−mark−recapture of turtles on their foraging
grounds (e.g. Frazer & Ehrhart 1985, Chaloupka &
Limpus 1997, Tanaka 2009), analyses of stranded tur-
tle humeri and scleral ossicles (e.g. Zug et al. 1986,
Snover & Hohn 2004, Avens et al. 2009), and analyses
of length-frequency data (e.g. Bjorndal & Bolten
1995, Bjorndal et al. 2001, Casale et al. 2011b). How-
ever, a comprehensive, cross-population synthesis of
existing sea turtle growth studies, particularly those
that report somatic growth curves, has not been con-
ducted for most species (but see Bjorndal et al. 2017,
Omeyer et al. 2017). Given the variable recovery tra-
jectories of sea turtle populations globally and poor
understanding of underlying drivers (Wallace et al.
2011, Mazaris et al. 2017, Valdivia et al. 2019), there
is a critical need to synthesize existing data to iden-
tify data gaps, aid parameterization of population
models, illuminate mechanisms underpinning trends,
and set research priorities.

Somatic growth curves are most accurate and use-
ful when they encompass all life stages, but individ-
ual growth studies tend to sample only a subset of a
species’ life cycle. Sea turtles exhibit wide geographic
distributions and undergo multiple ontogenetic habi-
tat shifts during their lifetime (Chaloupka & Musick
1997, Bolten 2003), which makes characterizing

growth rates across all life stages within a single
study challenging. For example, there is a dearth of
growth rate data for sea turtle pelagic life stages,
during which turtles occupy open-ocean habitats for
multiple years (e.g. Reich et al. 2007, Avens et al.
2013). Although this life stage remains understudied,
pelagic stage growth rates have in some cases been
obtained through skeletochronological analyses of
stranded turtle humeri (Avens et al. 2013, 2020,
Ramirez et al. 2015, Turner Tomaszewicz et al. 2017),
which retain multi-year growth records that can
backfill this data gap, or through study of turtle
growth rates near islands that are waypoints during
developmental migrations (e.g. The Azores; Bolten et
al. 1993, Bjorndal et al. 2000b, 2003). Data for large
subadult turtles are similarly sparse due to their rela-
tively low abundance but can be estimated through
long-term mark−recapture programs, skeletochrono-
logical studies, or study of adult turtles (NMFS SEFSC
2001, Avens et al. 2015, Omeyer et al. 2018). As a
result of these limitations, individual growth studies
tend to present an incomplete picture of a population
or species’ growth dynamics. Integrating data across
studies within a meta-analytic framework may help
fill in data gaps of individual studies and provide
more precise estimates of population- and species-
specific growth parameters (Thorson et al. 2015).

Growth rates vary considerably in sea turtles due
to a suite of biological and environmental factors that
can cumulatively drive a wide variation in size and
age at maturation among populations and species
(Avens & Snover 2013, Omeyer et al. 2017). Major
drivers of variation include temperature (Wallace &
Jones 2008, Marn et al. 2017), habitat use (Hawkes et
al. 2006, Hatase et al. 2010), population density (Bjorn-
dal et al. 2000a, Balazs & Chaloupka 2004), prey
availability and distribution (Balazs 1982, Diez & van
Dam 2002), and diet quality and composition (Peck-
ham et al. 2011, Ramirez et al. 2020b), among others.
Temperature, which is in turn inversely related to lat-
itude, is expected to be a particularly important driver
of sea turtle somatic growth variation because they
are ectothermic reptiles (Snover et al. 2015, Marn et
al. 2017, Stubbs et al. 2020). For example, Bjorndal et
al. (2013, 2016) identified distinct latitudinal changes
in growth for loggerhead Caretta caretta and hawks-
bill Eretmochelys imbricata sea turtles across the
western North Atlantic and Caribbean Sea. Integrat-
ing sea turtle somatic growth data within a meta-
analytic framework may therefore provide important
insight into population- and species-specific sources
of growth variation, including potential latitudinal
drivers of variation (Helser & Lai 2004, Gaertner et al.
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2008). Moreover, such an analysis may elucidate the
generality or specificity of sea turtle somatic growth
curves within species, and thereby the suitability of
extension of population- or species-specific parame-
ters to populations lacking robust somatic growth data.

Bayesian methods are often used as the framework
for implementing meta-analysis as they allow for data
integration within a flexible and consistent statistical
framework and better accounting of uncertainty
(Pilling et al. 2002, Gelman 2006, Helser et al. 2007).
For example, within hierarchical meta-analysis, vari-
ations in parameters between populations and spe-
cies are treated as random effects (Thorson et al.
2015), thereby allowing for sharing of information
across groups through partial pooling. This tends to
pull parameter estimates for ‘data-poor’ populations
and species towards the group mean (pooled) and
away from the observed data (unpooled; Helser et al.
2007). In contrast, parameter estimates for ‘data-rich’
populations or species are less influenced by the
hierarchical structure. Thus, the method improves
parameter estimates for less-studied groups, while
only marginally influencing parameter estimates for
more studied groups (Hoenig et al. 2016), making the
best use of available data for all groups.

The primary goal of this study was to synthesize
existing sea turtle growth data within a meta-ana-
lytic framework to develop species- and population-
specific parameter estimates, identify critical data
gaps, and evaluate the potential influence of multiple
sources of error (e.g. methodological vs. ecological).
To this end, we first performed a global literature re -
view of somatic growth studies across all sea turtle
species, specifically identifying those that fit somatic
growth functions to growth increment data. We then
modeled the parameters of the von Bertalanffy growth
curve (growth coefficient, K; asymptotic length, L∞),
which is the most commonly used growth function for
sea turtles, by integrating data from these studies
with a series of Bayesian hierarchical models to char-
acterize means and variances of these parameters for
each species and population. We specifically evalu-
ated the potential influence of species, population,
parameter estimation method (mark−recapture, skele-
tochronology, length-frequency analysis), study lati-
tude, and body size range of turtles sampled in each
study on growth parameter estimates by combining
all studies into a single likelihood within each model.
We believe outputs from this synthesis of sea turtle
growth studies will provide important priors for
growth parameters in demographic models, particu-
larly for species and regions where somatic growth
data may be lacking. When used in combination with

additional demographic data, either existing or
newly collected, they may aid in the study of sea tur-
tle population dynamics and prioritization of research
and conservation efforts for sea turtles globally.

2.  MATERIALS AND METHODS

2.1.  Literature review

We first performed a structured literature search to
identify and extract data from published sea turtle
growth studies. The search was conducted in Web of
Science, Google Scholar, the ProQuest Biological
Science Database, and the Sea Turtle Online Bibliog-
raphy (Archie Carr Center for Sea Turtle Research,
University of Florida). The search terms ‘growth rate,’
‘maturity,’ ‘mark−recapture,’ ‘length-frequency analy-
sis,’ and ‘skeletochronology’ were used in conjunc-
tion with ‘sea turtle’ and the names of the 6 extant
sea turtle genera (Caretta, Chelonia, Lepidochelys,
Eretmochelys, Natator, Dermochelys). We then per-
formed a secondary search for pertinent literature by
reviewing the International Sea Turtle Society (ISTS)
Conference Proceedings, Indian Ocean Turtle News -
letter, Marine Turtle Newsletter, Sea turtles of India
website, and a suite of books and journals known to
contain sea turtle publications (for a full list, see
Table S1 in the Supplement at www. int-res. com/
articles/ suppl/ m657p191_ supp .pdf). Lastly, we per-
formed an unstructured literature search of the refer-
ence lists of all papers and reports identified in the
structured searches.

We initially identified 195 sea turtle growth studies
that contained somatic growth rate data or growth
models. To allow for comparisons across studies, this
initial pool of studies was reduced to only those that
reported growth models. Within these studies, growth
was described with Gompertz (n = 11), logistic (n = 18),
or von Bertalanffy growth models (n = 59), or with
generalized additive models (GAMs; n = 33). Based
on the results of this literature review, we selected
the von Bertalanffy growth function as the focus of
our meta-analysis given that it was the most com-
monly used functional form and one of the most flex-
ible and easily applied approaches to describing
length-at-age. In addition, GAM smoothing spline
fits cannot be easily integrated across studies. The
von Bertalanffy growth equation is:

(1)

where Lt = average length at age t in straight cara-
pace length (SCL), L∞ = asymptotic length, t0 = age

1 e ( )0L Lt
K t t( )= −∞

− −

https://www.int-res.com/articles/suppl/m657p191_supp.pdf
https://www.int-res.com/articles/suppl/m657p191_supp.pdf
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when Lt = 0, and K = Brody’s growth coefficient, a
measure of the rate at which animals grow when
young. The von Bertalanffy curve is non-linear,
assuming rapid growth at the beginning of life and a
slow reduction in growth until sexual maturity, after
which point growth rate asymptotes at a certain
mean body length (L∞).

Studies subsequently needed to meet 4 primary
criteria to be included in the meta-analysis. First, the
publication needed to report L∞ and K estimates,
identify study locations, and provide sample sizes.
Sample size was recorded as the number of data
points used to estimate the von Bertalanffy growth
curve or the number of sea turtles sampled; these
could be different numbers in cases where age was
estimated from multiple skeletal growth rings from
the same individual or when there were multiple
recaptures of the same individual. Study location was
recorded as the latitude and longitude at the mid-
point of the study area, which in many cases spanned
hundreds of kilometers. Second, the publication
needed to identify the types of growth data and
methodology used to derive the parameter estimates
(e.g. mark−recapture, skeletochronology, length-fre-
quency analysis). Third, L∞ and K needed to be esti-
mated from data rather than given assumed values
based on ad hoc relationships. Fourth, data must
have come from wild sea turtles only (i.e. not captive
individuals), or in the case of head-started sea turtles,
derived from growth rates after the sea turtles were
released from captivity.

The resulting list of studies was then reduced fur-
ther to remove redundancies and anomalous data.
When multiple studies used the same dataset, only
the study that utilized the most comprehensive data-
set was included in the meta-analysis. Region- or
population-specific growth curves generated within
single studies were kept separate (e.g. Avens et al.
2017). In one case (Avens et al. 2015), separate
curves were provided for males and females. As we
did not investigate the influence of sex on growth, we
averaged the parameter estimates to generate a
curve for both sexes combined; most studies did not
fit separate growth curves for each sex. In 2 cases, i.e.
Hart et al. (2013) for hawksbill sea turtles and Snover
et al. (2007a) for loggerhead sea turtles, data on length
at capture, length at recapture, and time at liberty
were reported for individual turtles, which allowed
us to estimate a von Bertalanffy growth curve using
the Fabens method from these data (see Table S2
and Fig. S1). We used the Fabens method for simplic-
ity and because it was used in many of the mark−
recapture studies included in the meta- analysis.

However, methods that more explicitly model uncer-
tainty in estimating ages may provide more accurate
estimates of L∞ and K in future analyses (Francis
1988, Zhang et al. 2009). Lastly, because we could
not reasonably include temperature as a covariate in
our analysis, we excluded data from Eguchi et al.
(2012), who reported estimated growth coefficients
(K = 0.20) 2 to 10 times higher than those reported in
other green turtle studies (K = 0.02−0.09). These tur-
tles occupied habitats in an unnatural state where
heated effluent discharged from a local power plant
acted as a thermal refuge during winter months,
which likely extended active periods, enhanced local
productivity, and promoted fast growth (Eguchi et al.
2012). This power plant ceased operation in 2010 and
turtle growth rates are expected to slow as the sys-
tem reverts to its natural state (Eguchi et al. 2012,
2020). The full list of excluded studies can be found
in Table S3. Most excluded studies were early analy-
ses of datasets that were later expanded, fixed either
L∞ and K at a specified value, or did not report both
L∞ and K.

Leatherback Dermochelys coriacea and flatback
Natator depressus sea turtles were excluded from
our analysis. Our model assumes the species effect
on each growth parameter is drawn from a common
distribution. As leatherback sea turtles belong to a
different taxonomic family and grow to much larger
sizes than the other 6 sea turtle species, their species
effect was presumed to be different than the other
species. However, there were too few leatherback
studies to estimate a family effect and they were
therefore excluded from this study. Similarly, flat-
back sea turtles lack published von Bertalanffy growth
parameter estimates and were necessarily excluded
from the analysis.

Our final growth dataset comprised 37 separate
growth curves from 34 studies (Table 1). At least 1
study was identified with published von Bertalanffy
growth parameter estimates for 5 of the 7 extant spe-
cies of sea turtle: loggerhead (n = 15), green (n = 9),
Kemp’s ridley (n = 9), hawksbill (n = 3), and olive rid-
ley Lepidochelys olivacea (n = 1). Due to lack of pub-
lished t0 values in studies using mark−recapture or
cohort tracking methods, and a few of the skele-
tochronology studies, we excluded t0 from the meta-
analysis. Some studies presented L∞ in curved cara-
pace length (CCL), while the majority used SCL. When
necessary, we used species- and region- specific body
size conversion equations to convert all CCL esti-
mates to SCL (Table S4). Studies were categorized by
species and regional management unit (RMU, Table
S5, Wallace et al. 2010), an ecologically relevant bio-
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geographical unit intermediate to nesting population
and species. Wallace et al. (2010) identified a single
RMU for Kemp’s ridleys, but we used 2 RMUs in our
analysis given known differences in somatic growth
rates for Kemp’s ridleys that inhabit the Gulf of Mex-

ico (GoM) and the US Atlantic Coast (Avens et al.
2017, 2020, Ramirez et al. 2020a).

Within the literature, 3 categories of methods were
used to generate growth rates and size-at-age data
and estimate the von Bertalanffy growth curve para -

Species    RMU        Method       nturtle      SCL range       L∞         K         Reference
                                               (nsamples)         (cm)

G             ANW        MR            11           28−110       108.90    0.089     Frazer & Ehrhart (1985)
G             ANW        MR             8             27−54+b     114.76b  0.075     Frazer & Ladner (1986)
G             ANW        MR            41           26−62+       147.60    0.048     Boulon & Frazer (1990)
G             ANW          S          85 (406)         5−100       141.26    0.022     Goshe et al. (2010)
G             ANW        LFA           964          25−70           99.70    0.072     Bjorndal & Bolten (1995), MULTIFAN
G               ISW          MR           563          31−108b      110.77b  0.068     Watson (2006)
G                PE           MR            57           43−72         101.00    0.040     Koch et al. (2007)
G              PNW         MR        98 (103)       15−107         97.27    0.024     Tanaka (2009), recaptures >90 d only
G              PSW         MR          1316         38−114b      109.10b  0.039     Hof et al. (2017)
L              ANW        MR            41           30−82           94.70    0.115     Frazer (1987)
L              ANW        MR           118          50−90         110.00    0.031     Henwood (1987)
L              ANW        MR            19           38−110         96.10    0.057     Schmid (1995), recaptures >365 d only
L              ANW        MR         54 (60)        62−104         96.74    0.064     Foster (1994)
L              ANW        MR           132          45−105         99.70    0.053     NMFS SEFSC (2001)
L              ANW        MR            12           51−78           90.29    0.093     Snover et al. (2007a), Fabens method, calculated

herein
L              ANW          S              83           40−110       111.90    0.076     Klinger & Musick (1995), adjusted ages
L              ANW          S              69           52−101b        97.18b  0.096     Parham & Zug (1997), regression-growth protocol
L              ANW          S           70 (77)        44−90         100.04    0.097     Snover (2002)
L              ANW          S        313 (2799)       8−108       112.35    0.044     Avens et al. (2015), average of male and female
L              ANW        LFA           574            8−59b          98.57b  0.072     Bjorndal et al. (2000b)
L              ANW        LFA          1234         42−81b        110.90b  0.044     Bjorndal et al. (2001), Atlantic
L              ANW        LFA           570          42−81b        105.68b  0.051     Bjorndal et al. (2001), Gulf of Mexico
L               Med         MR            38           29−80b          89.22b  0.077     Casale et al. (2009)
L               Med           S              33           18−79b        104.35b  0.057     Casale et al. (2011a)c

H            AWCar       MR          2749         51−93           80.40    0.118     Kobayashi (2000)
H            AWCar       MR            24           22−66b          74.05b  0.137     Hart et al. (2013), Fabens method, calculated herein
H              PNC           S          40 (139)       12−80           94.81    0.090     Snover et al. (2013)
OR             AW            S              68           57−72           71.71    0.130     Petitet et al. (2015)
KR        ANWGoM

a     MR           117          19−59           62.27    0.317     Caillouet et al. (1995)
KR        ANWGoM

a     MR            61           14−69           69.40    0.259     Coyne (2000)
KR        ANWGoM

a     MR            58           22−67           71.10    0.210     Turtle Expert Working Group (2000), Gulf of Mexico
KR        ANWGoM

a     MR            82           40−65           64.08    0.182     Caillouet et al. (2011)
KR        ANWGoM

a       S              15           34−72           70.53    0.219     Zug et al. (1997), correction-factor protocol, Gulf of
Mexico

KR        ANWGoM
a       S        333 (1263)       4−69           65.90    0.250     Avens et al. (2017), Gulf of Mexico

KR         ANWAtl
a      MR            38           22−66           73.20    0.167     Turtle Expert Working Group (2000), Atlantic

KR         ANWAtl
a        S              56           19−57           58.90    0.215     Zug et al. (1997), correction-factor protocol, Atlantic

KR         ANWAtl
a        S         144 (109)      14−45           74.90    0.115     Snover et al. (2007b)

aKemp’s ridleys have a single RMU as determined by Wallace et al. (2010) but we split their RMU between Atlantic and
GoM subregions in our analysis given known regional variability in growth rates for this species (see Avens et al. 2017,
2020, Ramirez et al. 2020a); bConverted from curved carapace length (CCL) (Table S4); cAverage of von Bertalanffy growth
function parameters for growth rate and age at size methods

Table 1. Summary of von Bertalanffy growth parameter estimates used as input data for the Bayesian hierarchical growth
models by species of chelonid sea turtle (G: green Chelonia mydas; L: loggerhead Caretta caretta; H: hawksbill Eretmochelys
imbricata; OR: olive ridley Lepidochelys olivacea; KR: Kemp’s ridley Lepidochelys kempii) and regional management unit
(RMU) (ANW: Atlantic Northwest; ANWAtl: Atlantic Northwest — Atlantic; ANWGoM: Atlantic Northwest — Gulf of Mexico; AW:
Atlantic West; AWCar: Atlantic West Caribbean/USA; ISW: Indian Southwest; Med: Mediterranean; PE: Pacific East; PNC: Pa-
cific North Central; PNW: Pacific Northwest; PSW: Pacific Southwest). Method: technique used to derive parameter estimates
(S: skeletochronology; MR: mark−recapture; LFA: length-frequency analysis). Sample size is given as number of turtles, with
the total sample size in parentheses if the method used multiple data points from the same individual. SCL: straight carapace 

length; L∞: asymptotic length; K: growth coefficient
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meters: mark−recapture, skeletochronology, and
length-frequency analysis. Each approach introduces
different sources of error that contribute to uncertainty
in estimates and may bias results (e.g. turtle or bone
measurement error, back-calculation error; Chasco et
al. 2020). We therefore sought to account for these
sources of uncertainty in our analyses. (1) Mark−
recapture methods used information on the length at
first capture and length at recapture to calculate
growth increments. Growth increments, along with
information on the time at liberty, were used to fit a
variation of the von Bertalanffy growth curve re-para-
meterized to fit growth increments, such as the
Fabens method (e.g. Hart et al. 2013). When studies
reported parameter estimates for different time at lib-
erty intervals, only estimates from the longest time in-
terval, generally ≥365 d, were used. (2) Skeleto -
chronological methods were based on counting and
measuring humerus bone growth rings to back-
 calculate body length based on allometric relation-
ships and estimated age (see Snover et al. 2007a).
Growth curves were generated by fitting Eq. (1) to the
paired age and length data (e.g. Goshe et al. 2010). (3)
Length-frequency methods, such as the MULTIFAN
approach (Fournier et al. 1990), followed cohorts across
years by tracking nodes in the length-frequency dis-
tribution in each year. Since this method combines
measured lengths in each node with estimates of age
in each node, the method can be used to estimate von
Bertalanffy growth parameters (e.g. Bjorndal et al.
2000b). For all 3 methods, parameter estimates are
sensitive to the size range of the sea turtles sampled.
For example, a von Bertalanffy fit to data concentrated
in early life stages may overestimate L∞, while the
lack of early life stage data may result in a poorly esti-
mated K value (Gaertner et al. 2008). Therefore, we
classified each study into 1 of 4 categories of size ranges
sampled: complete (minimum size sampled <0.25 L∞

and maximum size sampled >0.75 L∞, 6 studies),
no large (minimum <0.25 and maximum <0.75 L∞,
5 studies), no small (minimum >0.25 and maximum
>0.75 L∞, 23 studies), and no large or small (minimum
>0.25 and maximum <0.75 L∞, 5 studies), and included
this variable as a categorical fixed effect in the models.

Finally, because sea turtle growth rates are ex pected
to broadly vary with temperature, we also included
latitude (absolute value) as a numerical variable,
recorded as the latitude at the midpoint of the study
area reported in each paper. Specifically including
temperature as a covariate in the models was not fea-
sible given that most studies spanned multiple years
and wide geographic areas, but here we considered
latitude a proxy for mean temperature.

2.2.  Hierarchical modeling

We used 9 linear mixed-effects models to estimate
L∞ and K for species and RMUs of turtles from the 37
growth curves. The response variables were the nat-
ural logs of the von Bertalanffy growth parameters L∞

and K from each study because the 2 variables are
correlated and have a non-linear relationship (Pilling
et al. 2002). Species and RMUs were included as ran-
dom effects so that we could separate the variance
components between species and between RMUs
within species. When an RMU effect was included, it
was nested within species. The effect of parameter
estimation method (skeletochronology, mark−recap-
ture, length-frequency analysis), body size range
sampled, and latitude were included as fixed effects.
Model configurations are summarized in Table 2. All
models had multivariate normal (MVN) likelihoods,
defined as:

(2)

where θi is the parameter vector of log(L∞) and log(K)
for study i, μi is the vector of mean values predicted
for study i, and Σ is the error variance−covariance
matrix. The models varied in how the means and
variances were treated, as well as which fixed and
random effects were included.

In Model A, the mean was:

(3)

where individual studies are denoted by i = 1 to N
and j = 1 (L∞) or 2 (K); μ is the expected mean log
value of the parameter; α is the intercept; β is the
fixed effect of parameter estimation method Xi used
in study i, where Xi = 1 (mark−recapture), 2 (skeleto -
chronology), and 3 (length-frequency analysis); and
γZ[i],j is the effect of RMU on the log mean, where Zi

indicates the RMU associated with study i. Both α
and β were given vague normal priors with mean 0
and standard deviation 1000. The RMU effect γk for
RMU k was drawn from a multivariate normal distri-
bution associated with its species:

(4)

where γs[k] is the vector of species effects for the spe-
cies s associated with RMU k, and Σp is the variance−
covariance matrix across RMUs, defined as:

(5)

where σ2
p,L is the variance among RMUs in log(L∞),
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σp,L,K is the covariance. The species effects γs

are similarly drawn from a multivariate normal
 distribution:

(6)

with a mean of 0, and a variance−covariance matrix
Σs defined as:

(7)

where σ2
s,L, σ2

s,K, and σs,L,K are the variance in log(L∞),
variance in log(K), and covariance among species.
The variances parameters σ2

p,L, σ2
p,K, σ2

s,L, and σ2
s,K each

had a vague inverse gamma prior, while the covari-
ances σs,L,K and σp,L,K were defined as the correlation
between the 2 variables, given vague uniform priors
between −1 and 1, times the standard deviations of
the 2 variables. The likelihood was multivariate nor-
mal (Eq. 2), with the mean vector defined by Eq. (3),
and error variance−covariance matrix Σ given a vague
prior on the inverse of the variance− covariance matrix
using the Wishart distribution.

Model B was the same as Model A, except that
instead of having an RMU effect nested within spe-
cies, there was only a random effect on species, de -
fined as in Eqs. (6) and (7). Model C was the same as
Model A, except that the error variance− covariance
matrix was allowed to be different for the parameter
estimation method employed for each study, each
given a vague prior on the inverse of the variance−
covariance matrix using the Wishart distribution.
Models D through I were based on either Model A or
Model B, but varied which fixed effects were included
(Table 2). For example, in Model H, the mean was:

(8)

where β2 is the fixed effect of the size range category
X2 and γs was the random effect of species Si from
study i on parameter j. In Model I, the mean was:

(9)

where β3 is the slope associated with the latitude X3

from study i for parameter j.

2.3.  Model evaluation and selection

The posterior distributions for each model were
calculated using Markov chain Monte Carlo (MCMC)
through the software JAGS run in R (version 3.5.3, R
Core Team 2019) with R2jags (Plummer 2016). We
ran each model with 2 chains of 110 000 iterations,
discarding the first 10 000 as a burn-in and with a
thin of 4. Each model was considered converged when
the Gelman-Rubin diagnostic (R̂) value was below
1.05 and effective sample size (neffective) was above
300 (Lunn et al. 2013). Additional MCMC iterations
were run as needed to achieve this standard. We
then analyzed the residual plots of each model to
ensure they adequately described the data. Model
adequacy was also evaluated with the Pareto k diag-
nostic, where data points with values <0.5 are con-
sidered to be well fitted (Vehtari et al. 2017). The best
model was chosen using information criteria includ-
ing the deviance information criterion (DIC; Spiegel-
halter et al. 2014) calculated by JAGS, the widely ap -
plicable information criterion (WAIC; Watanabe 2013),
and leave one out information criterion (LOOIC) cal-
culated by the R package ‘loo’ (Vehtari et al. 2017).
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Model         Variables in model              Iterations      neffective        R̂         % k      Deviance      DIC      WAIC     LOOIC       w

A             Species > RMU, Method           200 000          5900      1.002      0.81          21.6         25.94      11.62       12.78      0.00
B                    Species, Method                 100 000          4100      1.001      0.95          19.6         15.30      7.53       7.97      0.01
C                    Species > RMU,              1 000 000        7700      1.040      0.81          59.0         68.63      48.69       49.30      0.00
              Method, error by Method
D                           Species                         100 000          8300      1.001      0.97          14.2         0.00      0.00       0.00      0.71
E                     Species > RMU                  200 000          1600      1.037      0.84          15.7         10.24      3.64       4.47      0.08
F         Species, Method, Size Range       100 000          4100      1.001      0.81          25.4         35.63      17.41       19.27      0.00
G           Species, Method, Latitude         110 000       11 000     1.001      0.95          21.5         20.11      10.44       11.07      0.00
H                Species, Size Range              100 000          5900      1.001      0.86          18.3         19.06      7.71       8.49      0.01
I                     Species, Latitude                 100 000          6600      1.001      0.95          15.5         5.17      2.40       2.62      0.19

Table 2. Convergence diagnostics including effective sample size (neffective > 300 indicates convergence), Gelman Rubin diag-
nostic (R̂ < 1.05 indicates convergence), the percent of Pareto k diagnostic values that are below 0.5 in the leave-one-out esti-
mation (% k, higher values indicate a better specified model), model deviance, and model selection criteria showing the differ-
ence (Δ) between each model and the best model (where 0 is best) in the deviance information criterion (DIC), widely
applicable information criterion (WAIC), and leave-one-out information criterion (LOOIC) and the LOOIC model weights (w).
Method: technique used to derive parameter estimates (skeletochronology, mark−recapture, or length-frequency analysis). 

RMU: regional management unit
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The differences in LOOIC between each model i and
the best model (ΔLOOIC,i) were used to compute the
model weights wi as:

(10)

which sum to 1 and indicate the relative support of
the data for each model. The best model according to
the information criteria was used to estimate the
mean value of L∞ and K for each RMU k as: 

(11)

(12)

To predict the mean values for each species, the
same equation was used, except substituting the spe-
cies effect γs for the RMU effect.

3.  RESULTS

The expected negative correlation between log(K)
and log(L∞) was seen across the 37 von Bertalanffy
growth curves we identified from the primary litera-
ture (Fig. 1, Table 1). However, individual studies
varied from this relationship, especially for green sea
turtles.

All 9 meta-analysis models converged adequately
according to the Gelman-Rubin diagnostic and the
effective number of parameters (Table 2). The dis-
tribution of the residuals was quite similar between
the models and appeared to be normally distributed
except for some outliers with larger predicted
 values of both parameters (Figs. S2 & S3). The
Pareto k  diagnostic was <0.5 for most data points in
all models, but the simpler models performed better

(Table 2, Table S5). The DIC, WAIC,
and LOOIC were consistent in finding
that the best model was Model D
(model weight = 0.71), which was the
model with a random effect of species
but no effect of RMU, parameter esti-
mation method, sampled body size
range, or latitude on either the mean
or the error variance (Table 3, Fig. 2).
This was the simplest model consid-
ered and had the best Pareto diag-
nostics (Table 2; Table S6). The only
other models that were supported by
the data according to the information
criteria were the one with no fixed
effects but including a random effect
of RMU (Model E, Table 4, Fig. 3),
and the model that included the fixed
effect of latitude (Model I; Fig. 4;
Fig. S4). Model I showed the ex -
pected pattern of lower K and higher
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Species                  n      Lmax                             L∞                                                 K
                                            Mean       SD             Mean       SD       2.5%      97.5%           Mean         SD       2.5%     97.5%

Green                     9           112.55     8.30           110.27     9.15       93.47      129.29           0.051       0.008     0.037       0.067
Loggerhead         15         98.24   10.60          100.06     6.42       88.10      113.32           0.066       0.008     0.053       0.083
Hawksbill              3           87.89     8.82           84.63     9.83       66.54      105.59           0.113       0.027     0.069       0.175
Olive ridley           1           72.15     3.30           81.52   13.25      56.92      109.5            0.127       0.049     0.059       0.247
Kemp’s ridley        9         72.40a   2.35a               69.97      6.13       58.73      82.81           0.198       0.031     0.144       0.263

aData from Marquez (1994), which summarized 26 yr of nesting female body size data from the species’ primary nesting beach

Table 3. Species-specific posterior means, standard deviations (SD), and 95% credible intervals of von Bertalanffy parameters
(L∞: asymptotic length; K: growth coefficient) for the 5 species of sea turtles from the best model with species only (Model D).
Lmax is the straight carapace length (cm) of the largest nesting female reported across the 15 most recent sea turtle studies for 

each species (see Table S7)

ANW

ANW

ANWAtl

ANWGoM

AW

AWCar

ISW

Med

PE

PNC

PNW
PSW

Species/RMU
Green

Loggerhead

Hawksbill

Olive ridley

Kemp’s ridley

log(L∞)

lo
g(
K

)

−3

−2

4.25 4.50 4.75 5.00

1.0
2.0

3.0

log10(n)
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length, the Brody growth coefficient (K), and sample size in each study (n =
number of turtles). Abbreviations of regional management units (RMUs) as in 

Table 1. Data are given in Table 1
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L∞ with distance from the equator, but this effect
was small.

Model D estimated that the standard deviations
among species for both variables and the covariance
was roughly similar in magnitude to the error stan-
dard deviations and covariance. Model E estimated
some variation among RMUs as well, especially for L∞

(Table 5). From the posterior distributions of the
parameters for species from Model D (Table 3, Fig. 2)
and RMUs from Model E (Table 4, Fig. 3), there was
not much variation among the RMUs in our analysis
for either parameter. For the 4 species that have mul-
tiple RMUs (green, loggerhead, hawksbill, Kemp’s
ridley), the posterior distributions of the RMU param-

eters overlapped with each other with only slight
apparent differences in the values of K for Kemp’s
ridley and L∞ for green and loggerhead sea turtles.
On the other hand, the species were quite different
from each other for both parameters, as expected.

In general, the posterior distributions showed the
expected pattern that well-studied species (green,
loggerhead, Kemp’s ridley) have more precise esti-
mates of their parameters than the species that have
only 1 to 3 studies (olive ridley and hawksbill). The ex-
ception to this pattern was the estimate of L∞ for green
sea turtles, which had a relatively large standard devia-
tion (Fig. 2; Fig. S5). This reflects the large variation in
green sea turtle L∞ values across studies (Fig. 1).

Species                         RMU                 n                       L∞                                                 K
                                                                              Mean       SD       2.5%      97.5%           Mean         SD       2.5%     97.5%

Green                           ANW                5             113.92     11.69     92.90      138.80           0.053       0.009     0.037       0.074
Green                            ISW                 1             108.71     15.57     80.80      142.72           0.055       0.015     0.033       0.091
Green                             PE                   1             106.82     15.22     78.91      139.15           0.050       0.013     0.029       0.079
Green                           PNW                 1             106.01     15.80     76.90      139.70           0.045       0.012     0.024       0.071
Green                           PSW                 1             108.26     15.44     80.39      141.34           0.049       0.012     0.028       0.078
Loggerhead                 ANW               13             100.53     7.11     87.23      115.33           0.066       0.008     0.052       0.083
Loggerhead                 Med                 2             98.09     12.04     76.07      123.50           0.069       0.015     0.044       0.103
Hawksbill                   AWCar               2             83.22     11.69     62.30      108.34           0.116       0.031     0.068       0.187
Hawksbill                     PNC                 1             87.15     14.06     62.70      118.16           0.108       0.033     0.057       0.185
Olive ridley                   AW                  1             80.96     15.02     54.32      113.85           0.125       0.049     0.057       0.246
Kemp’s ridley             ANWAtl               3             70.84     8.62     55.47      89.39           0.178       0.037     0.112       0.259
Kemp’s ridley           ANWGoM             6             69.74     7.01     57.07      84.64           0.210       0.036     0.148       0.289

Table 4. Population-specific posterior means, standard deviations (SD), and 95% credible intervals of von Bertalanffy parame-
ters (L∞: asymptotic length; K: growth coefficient) for all 11 populations of sea turtles examined in this study from the model
with populations nested within species (Model E). See Table 1 and Table S5 for regional management unit (RMU) definitions 

and additional information
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Fig. 2. Posterior distributions of the estimated mean values of asymptotic length (L∞) and the growth coefficient (K) by species 
from the best model with species only (Model D)
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4.  DISCUSSION

Through Bayesian hierarchical modeling, we pres-
ent a meta-analysis of von Bertalanffy growth para -
meters (L∞, K) for 5 chelonid sea turtle species (green,
loggerhead, hawksbill, olive ridley, Kemp’s ridley)
and 11 sea turtle RMUs identified by Wallace et al.
(2010). We observed considerable variation in para -
meter estimates among species, but lower variation
as sociated with populations (among RMUs, across
latitudes) and sources of uncertainty (parameter esti-

mation method, size range sampled),
such that the best model according to
the information criteria only included
a species effect. There was also a sub-
stantial error variance between stud-
ies even within the same species-spe-
cific RMU (Table 5), which contri buted
to the wide credible intervals for many
species. Because we found no strong
differences in parameter estimates
between RMUs within each  species,
the species-specific estimates herein
are likely more robust than the RMU-
specific estimates, and they are more
precise for most species. However,
these findings are based on limited
data — only 22% (11/49) of RMUs for
these species are represented in our
dataset and only 10% (5/49) had mul-
tiple parameter estimates to synthe-
size. Therefore, RMU, latitudinal, and
methodological effects may emerge as

stronger drivers of sea turtle growth variation in
future meta-analyses when additional data become
available. The dearth of suitable data for this analysis
highlights the need for expanded collection, analysis,
and synthesis of sea turtle growth rate data globally.

4.1.  Growth variation among sea turtles

Our meta-analysis identified clear differences in as-
ymptotic length (L∞) and growth (K) among sea turtle
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Fig. 3. Posterior distributions of the estimated mean values of asymptotic length (L∞) and the growth coefficient (K) by population 
from the model with populations nested within species (Model E)
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Fig. 4. Predicted mean values (with 95%CI) of the growth coefficient (K) by
species and latitude (Model I). See Fig. S4 for asymptotic length (L∞). Filled
points denote data from the Northern Hemisphere; open points denote data 

from the Southern Hemisphere
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species that largely align with known taxonomic vari-
ation. Of the species we investigated, green and log-
gerhead turtles are among the largest and longest-lived
(maturity: >30 yr, >90 cm SCL), followed by hawks-
bills (maturity: >15 yr, >75 cm SCL) and the ridleys
(maturity: >10 yr and >60 cm SCL; Avens & Snover
2013). Our results largely follow these patterns, with
L∞ decreasing and K increasing from the largest
(green) to the smallest (ridleys) sea turtles. Moreover,
mean L∞ estimates are comparable to mean maximum
lengths of nesting females (Lmax) reported in the liter-
ature for all but olive ridleys (Table 3, Table S7). There-
fore, our species-specific parameter estimates are
ecologically realistic for green, loggerhead, hawksbill,
and Kemp’s ridley sea turtles. Until additional data
become available, research applications for olive rid-
leys should utilize the von Bertalanffy growth curve
reported by Petitet et al. (2015), or consider the size-
at-age smoothing spline growth function reported by
Zug et al. (2006).

The results of our model are most useful and robust
for sea turtle populations in the western North Atlantic
Ocean (green, loggerhead, and Kemp’s ridley), where
most studies included in our analysis were conducted.
This large study count explains the higher precision
in K estimates for green and loggerhead turtles, and
L∞ for Kemp’s ridley and loggerhead turtles. The wider
posterior density for K of Kemp’s ridley and L∞ for
green turtles can be attributed to the differences be-
tween the estimates from the individual studies (Fig. 1,
Table 1). However, due to partial pooling, the informa-
tion from those studies improves the precision of the
estimates for other populations of the same species.
Therefore, the species- and RMU-specific para meter
estimates presented herein for green, loggerhead,
and Kemp’s ridleys may be useful priors for growth
parameters in demographic models for populations of
these species that lack published growth curves.

Although inferences were limited, our analysis iden-
tified some differences in species-specific parameter
estimates among certain RMUs. For example, even
with only 2 studies from the Mediterranean RMU,
wider posterior density L∞ and K for Mediterranean
vs. Atlantic Northwest loggerheads suggested poten-
tial differences in estimates between these RMUs.
Indeed, through skeletochronological and genetic
analyses, Piovano et al. (2011) showed that logger-
head turtles of Mediterranean origin likely grow
faster and mature at younger ages (and smaller sizes)
than turtles of Atlantic origin, possibly due to unique
physiological traits that enhance growth rates and
lower time to maturity (i.e. higher assimilation effi-
ciency) but reduce ultimate size (i.e. higher somatic
maintenance costs, lower cumulative investment to
maturation; Marn et al. 2019). Expanded analysis of
loggerhead growth data from the Mediterranean,
and other RMUs, may yield greater divergence in
parameter estimates for these 2 RMUs and a wider
range of parameter estimates across all loggerhead
RMUs. Our analysis also identified apparent differ-
ences in K estimates between Kemp’s ridleys that
inhabit the Gulf of Mexico vs. the US Atlantic Coast
as juveniles. These findings align with the growing
body of evidence that Kemp’s ridleys that inhabit the
US Atlantic grow slower than those that inhabit the
Gulf of Mexico (Avens et al. 2017, 2020, Ramirez et
al. 2020a).

Interestingly, despite having the most spatially
comprehensive dataset and most variable study-
 specific parameter estimates (Fig. 1), our model pre-
dicted that green turtle growth parameters vary little
among RMUs. These findings may be an artifact of
our limited sample size and the effect of partial pool-
ing, which likely drew estimated values towards the
species mean and away from the observed data for
the 4 (of 5) green turtle RMUs with only a single
study. Additionally, green turtle growth parameters
may not be as variable as illustrated in Fig. 1. The 2
studies that deviated from the typical L∞ and K rela-
tionship derived von Bertalanffy growth curves from
incomplete size ranges (Boulon & Frazer 1990: 25.6−
62.3 cm SCL; Tanaka 2009: <55 and >85 cm SCL),
which likely influenced their L∞ and K estimates.
Additionally, Goshe et al. (2010), who reported an
anomalously high L∞ estimate of 141.26 cm, found
that both the logistic and Gompertz growth functions
were better fits to their size-at-age data and yielded
asymptotic length estimates closer to the other green
turtle studies identified in our meta-analysis (logistic =
104.67 cm, Gompertz = 113.07 cm). This highlights
that although the von Bertalanffy growth function

                             Error              Species            Population

Model D                                                                       
σL∞                     0.265                0.209                    NA
σK                       0.451                0.582                    NA
σL∞, K               −0.018             −0.098                    NA

Model E                                                                        
σL∞                     0.271                0.199                   0.115
σK                       0.446                0.571                   0.189
σL∞, K               −0.02              −0.082                −0.003  

Table 5. Posterior median standard deviations and covariances
from the best model with species only (Model D) and the
model with populations nested within species (Model E). L∞:
asymptotic length, K: growth coefficient; NA: not applicable
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tends to provide reasonable fits similar to other ap -
proaches (Frazer & Ehrhart 1985, Bjorndal et al. 2000a,
Snover et al. 2007b), different growth functions may
prove better fits for certain species and populations.
Of course, such variation among green turtle growth
parameters may also be due to environmental factors
such as temperature and diet (see Section 4.2). Ulti-
mately, the question of whether growth parameters
vary among populations cannot be adequately
answered based on our analysis, and there is need
for more data from most RMUs.

4.2.  Methodological and ecological drivers 
of growth variation

Many sources of uncertainty contribute to sea tur-
tle somatic growth variation, including those associ-
ated with measuring growth rates (i.e. observation
error) and biotic and abiotic processes that lead to
variability in growth among individuals. Within our
analysis, we specifically evaluated the potential in -
fluence of parameter estimation method, body size
range, RMU, and latitude on growth parameter
 estimates.

We found no difference in either means or vari-
ances of L∞ and K estimates between studies that
employed different parameter estimation methods,
which may be reassuring for those who wish to inte-
grate disparate growth datasets as inputs into popu-
lation dynamics models. This result is primarily
based on inferences from the 3 best-studied species,
where there were studies that used 2 (Kemp’s rid-
ley) or 3 (green, loggerhead) parameter estimation
methods. Importantly, these findings align with those
of Chasco et al. (2020), who demonstrated that inte-
grating multiple loggerhead sea turtle growth data
types within a single modeling framework may help
fill important data gaps in growth curves, reduce
biases, and improve parameter estimates. We expect
that these findings should apply to the whole Che-
loniidae family, since biases specific to any of the
methods used to study sea turtle growth rates
should be similar across species for SCL measure-
ments. We also found that size range sampled did
not influence the results, which was somewhat sur-
prising given the known biases in fitting the von
Bertalanffy growth curve to samples missing either
large or small animals (e.g. Ortiz de Zárate & Bab-
cock 2016). This result may be an artifact of the fact
that only 6 of the 37 included studies sampled a com-
plete size range, so that, if there were biases, they
were common across most studies.

The fact that the model including latitude was the
second best model in our analysis indicates that tem-
perature/latitudinal effects on growth may be impor-
tant. Although sea turtle growth rates are expected
to be strongly related to temperature/latitude (Wal-
lace & Jones 2008), in practice, establishing direct
links between temperature and growth has been
challenging. For example, Bjorndal et al. (2013, 2016,
2017) identified latitudinal or climate-driven varia-
tion in green, loggerhead, and hawksbill sea turtle
growth rates in the Caribbean, but similar effects
were not observed for green sea turtles across Aus-
tralia and Hawaii (Balazs & Chaloupka 2004, Cha -
loupka et al. 2004) or Kemp’s ridley sea turtles in the
western North Atlantic (Avens et al. 2020, Ramirez et
al. 2020a). Within our analysis, we observed weakly
declining trends in K with increasing latitude for
green and Kemp’s ridley turtles (Fig. 4). However,
limited spatial data within and among all sea turtle
species contributed to high uncertainty in these rela-
tionships. Furthermore, marine ecosystems have ex -
perienced unprecedented, spatiotemporally variable
change over the past century due to climate change,
fisheries, and many anthropogenic stressors (Byrnes
et al. 2007, Halpern et al. 2008, Rocha et al. 2015,
Beyer et al. 2016), factors that may directly and indi-
rectly influence sea turtle growth rates. We necessar-
ily integrated growth curves based on data collected
over multiple decades (publication dates: 1985− 2018).
However, extensions of our model, when additional
data become available, to include year effects or other
environmental parameters will allow for greater ana -
lysis of correlations between growth rates and vari-
able environmental stressors.

Diet variation could not be evaluated with our
model but may also contribute to variation in L∞ and
K estimates within species, particularly for green sea
turtles. Sea turtles display a wide range of foraging
strategies both within and among species (Bjorndal
1997). Although loggerhead and Kemp’s ridleys are
generalist carnivores that forage primarily on crabs
(but also other invertebrates and sometimes fish),
individuals can have very narrow niches or unique
foraging behaviors within populations (Hatase et al.
2002, McClellan & Read 2007, Vander Zanden et al.
2010, Pajuelo et al. 2016, Ramirez et al. 2020b).
Moreover, there is a growing body of evidence that
green sea turtles, classically considered herbivores,
may be more omnivorous than previously thought.
Although the consumption of seagrass and macro-
algae remains widespread, consumption of animal
protein has also been observed in benthic green turtles
across the globe (Mauritania: Cardona et al. 2009;
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eastern Mediterranean: Cardona et al. 2010; Bahamas:
Gillis et al. 2018; California, USA: Lemons et al. 2011;
western Florida, USA: Williams et al. 2014; Oman:
Ferreira et al. 2006; Colombia: Amorocho & Reina
2007; Fiji: Piovano et al. 2020). While our modeling
results suggested low variation in L∞ and K estimates
among RMUs, dietary plasticity could contribute to
variation in green turtle L∞ and K estimates among
individual growth studies (Fig. 1).

More sea turtle growth studies are needed, espe-
cially syntheses of existing length-at-age or length-
frequency data, in order to close data gaps and fully
investigate sea turtle growth variation. Our analysis
was conducted on a very narrow range of sea turtle
growth studies (34/195) and RMUs (green: 5/17 RMUs;
loggerhead: 2/10; hawksbill: 2/13; olive ridley: 1/8;
Kemp’s ridley: 1/1). However, there are considerable
additional data that should be collated through
region-wide collaborations among data holders (e.g.
Bjorndal et al. 2017), such as those from the 61 stud-
ies that used Gompertz, logistic, or non-parametric
growth functions or the 75 studies that presented an -
nual growth rate data but not growth curves. Addi-
tionally, the Mediterranean (Greece, Turkey, Cyprus),
Southwest Atlantic (Brazil), North Pacific (Japan,
Hawaii), and South Pacific (Australia) likely have
significant additional data that could be used to fit
additional von Bertalanffy growth curves, as they in -
clude some of the longest-running sea turtle research
and conservation programs in the world (Limpus et
al. 2003, Margaritoulis 2005, Marcovaldi & Chaloupka
2007, Balazs et al. 2015). Fitting multiple new data -
sets together within a meta-analytic framework would
allow for greater investigation and mitigation of
biases caused by differences in study sample size
and body size range (e.g. Chasco et al. 2020). We also
encourage future analyses to evaluate and report fits
of multiple model forms (e.g. Gompertz, logistic, non-
parametric) to allow for better identification of the
somatic growth function most appropriate for each
sea turtle species and population and comparisons
therein (e.g. Parham & Zug 1997, Goshe et al. 2010,
Chasco et al. 2020).

4.3.  Conclusion

Using a meta-analytic approach, we integrated exist-
ing von Bertalanffy growth data for 5 species of che-
lonid sea turtle to provide updated estimates of K and
L∞ through standard Bayesian hierarchical modeling
methods. The estimated species-specific mean val-
ues of the growth parameters from this study (Table 3)

would be appropriate priors for future growth studies
and for growth parameters in population dynamics
models, particularly for status assessments of popula-
tions that lack regional somatic growth curves. How-
ever, all available ecological information, including
genetic, environmental, and ecological, should be
used to assess the suitability of extending RMU-
 specific estimates to other populations. Data from the
western North Atlantic Ocean dominate our dataset
and thus provide the most robust estimates. Consid-
erable effort is needed to expand growth studies to
additional sea turtle populations through syntheses
of existing data or initiation of new research projects.
Our species-specific results will possibly be the most
valuable to natural resource managers, sea turtle
biologists, and modelers in regions lacking robust
growth datasets, as they provide an important start-
ing point for evaluating size-at-age relationships,
constructing maturation schedules, and developing
stage-structured population models.
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