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Motivation
1. Review theory and math of carrying capacity.

2. Highlight two challenges to apply this concept.
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Carrying Capacity in Ecology

Definition 1: Basic Ecology

Maximum population size (number or organisms) that
can be supported indefinitely by a given environment.

» Simple definition

» Complex application




Sliding Baselines and Anecdotes

Table 2. Historical accounts of Reefs befor'e
the early great abundance of C 0 I um b Us

green turtles in the Caribbean

Andres Bernaldez,
writing about
Columbus’

2nd voyage in 1494

Ferdinand Columbus,

writing about the 4th
voyage in 1503*

Edward Long (1774),
writing of the late

1600s

Southeastern  But in those twenty leagues, they saw very many more, for

Cuba the sea was thick with them, and they were of the very
largest, so numerous that it seemed that the ships would run
aground on them and were as if bathing in them.

Cayman ...1n sight of two very small and low 1slands, full of tortoises,
[slands as was all the sea about, insomuch that they looked like little
rocks ...

West of the ...1t 1s affirmed, that vessels, which have lost their latitude in
Cayman hazy weather, have steered entirely by the noise which these
[slands creatures make in swimming, to attain the Cayman isles.

“not seen. cited i Lewis 1940

How many sea turtles lived in the Caribbean in 1492?

Historical catches (6.5 million)

Carrying capacity models (660 million)




Implications: Management & Conservation

Conceptual Framework

* Relationship between population growth and
resource availability (assume limiting resources).

* Limiting factors: food, space, water
(predation and competition).

Application for Understanding Carrying Capacity
» Estimate resources necessary per individual.
* Calculate number of individuals supported.




Carrying Capacity Definitions
Definition 2: Population Dynamics

Equilibrium population size where birth rate equals
death rate due to density dependent processes.

exponential growth logistic growth
A

population size
population size

time time

Exponential Logistic



Modelling Population Growth

Change in population
Number of
individuals:

(plus births, minus deaths)

dN/dt=(bN)-(dN)=(b-d)*N

dN /dt = (bN)-(dN)=r* N




Carrying Capacity (K)

Logistic growth model dv A
(Pear| & Reed, 1920): dz

N: population size or density

r: intrinsic rate of increase
(maximum per capita growth rate in absence of competition)

Expression in brackets: density-dependent growth potential:
~ 1 at low N (logistic growth -> exponential growth)
~ 0 when N = K, where population growth ceases.




Carrying Capacity (K)
Logistic growth model
(Pear| & Reed, 1920):

(a) Logistic population growth
model, shows population size (N)
leveling of f at a fixed carrying
capacity (K) over time ().

(b) Logistic population growth rate
(dN/dt) as function of population size. dn
The growth rate peaks at N = 0.5 K
and equals zero at N = Kand N = 0.




Carrying Capacity (K)
Logistic growth model (Pear| & Reed, 1920):

AN (K-N
ar K




K affects birth / death rates

N = K is a stable equilibrium
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Implications: Management & Conservation

Conceptual Framework
* Focus on dynamics rather than static value.

* Equilibrium between death and birth rates.

Application for Understanding Carrying Capacity

 Empirical evidence of density dependence.




Carrying Capacity Definitions

Definition 3: Average population size over time.

Birth and death rates
need not be equal, if
there is migration pool 1 ED o pool2

(unlike logistic model).

Despite population
fluctuations, no change AN B+I-D-E

in "average” population At At
abundance over time.




Implications: Management & Conservation

Conceptual Framework
* Focus on abundance.

* Equilibrium of death and birth and emigration.

Application for Understanding Carrying Capacity
 Empirical evidence of population stability.

* No abundance trend over time.




Mass-nesting by olive ridley sea turtles at Ostional,
Costa Rica. Photograph by Vanessa Bézy.




Challenges - Equilibrium Points

Simple population models
can produce complex
(unpredictable) behavior.

Ocean's dominant
physical forcing
is "red"” |
(long wavelength "
low frequency) \




Logistic Growth Without K

Nature 261 459-67 (1976)

Simple mathematical models with very

complicated dynamics
Robert M. May*

First-order difference equations arise in many contexts in the biological, economic and social sciences.
Such equations, even though simple and deterministic, can exhibit a surprising array of dynamical
behaviour, from stable points, to a bifurcating hierarchy of stable cycles, to apparently random
fluctuations. There are consequently many fascinating problems, some concerned with delicate
mathematical aspects of the fine structure of the trajectories, and some concerned with the practical
implications and applications. This is an interpretive review of them.

Nt+l1=a>* Nt > (1-b* Nt)




Logistic Growth Without K

Nt+1 = Nt

* a *(1—b*Nt)

a = Lambda

b = density dependence

As population growth
rate (a) increases...
something odd happens

Deterministic model
causes unpredictable
chaotic behavior

1.0p

x |

0.5k




Implications: Management & Conservation

- Single populations cycle (without predators / prey)
- Initial conditions influence predictive capability
- If natural processes (e.g., precipitation, storms)

are chaotic... populations tracking these physical
drivers may also follow chaotic patterns indirectly

Main Idea: Deterministic nature '@EV

of many natural systems does i
not make them predictable. *«A




Low Frequency Physical Forcing

A comparison of terrestrial and
marine ecological systems
John H. Steele

Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA

I review here the differences between temporal variability in terrestrial and marine environments and
consider how this external forcing may affect population fluctuations in the two systems. The internal
dynamics and community responses are expected to differ significantly with marine populations more
likely to show longer term changes between alternative community structures.

(Steele 1985H)

. L rE A u
kB ¥ '-\J.IIIJ 1A | J b +,|L.y_-frll.

Spectral Power

0.2 L
Frequency




Implications of a "Red" Ocean

Many marine species
undergo periodic
(large wavelength)
oscillations even
without harvest.

Species dynamics
recreated with
simple models, when
forcing frequency
less than population
response rate (r).

a
ge<r Slower
forcing
4 v
b

g>>r Faster
forcing

Similar
forcing

Fig. 4 Response of a two-equilibria system to stochastic forcing

at frequencies: a, much less than and b, much greater than the

intrinsic response rate of the system. ¢, Indeterminacy of the system
when the rates are comparable.

(Steele 1985)




Decadal Oscillations

FISHERIES OCEANOGRAPHY Fish. Oceanogr. 3:1, 15-21, 1994

Physical and biological consequences of a climate event in the

central North Pacific (Polovina et al. 1994)

JEFFREY J. POLOVINA,'-* GARY T. important goal in marine science, and now, with con-
MITCHUM,’ NICK E. GRAHAM,’ MITCHELL cerns over climate change, is even more critical. How-
P. CRAIG,' EDWARD E. DEMARTINI' AND ever, given the lack of coherent climate and ecosystem
ELIZABETH N. FLINT? dara sets, most studies have relied only on fishery data

(Mantua et al. 1997)



Conclusions

Basic Definition:
Maximum population size (humber that can be
supported indefinitely by a given environment.

Updated Definition:
Average population size over time.

Birth and death rates.
Emigration, Range Expansion.

New Resources, New Behaviors.




Conclusions

"And now Edgar’s gone. ...
Something’s going on around here."

Are vital rates (or behavior) influenced
by number of individuals in population ?




Population Growth Model Assumptions
(Hastings et al. 2011)

1. Closed Population: migration in /out of population.

2. Homogeneous Population: All individuals identical.
(All we need to know is the number of individuals)

Thus, the number of offspring per individual
(or the per capita birth and death rates) are:

(i) constant through time, and
(ii) independent of population size.



Fishery Implications - MSY

Assumptions: Static Carrying Capacity, No Stochasticity

Finding Maximum: (slope = 0O) dB /dt= rB(B-K)
Derivative of B with respect to B
dB/dt= rBB- rBK

d(dB/dt)/dB= 2rB-rK
d(dB/dt)/dB= r*(2B-K)
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How do we make
d(dB/dt)/dB=07?
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Fishery Implication - MSY

Relates current biomass and yield to the optimum
yield that could be sustained indefinitely

Recruitment Curve Phase Diagram
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Fishery Implications: MSY
K/2 K

Busy Overfishing:
Defined by
fishing
mortality (F)

Overfished
Stock:
Defined by
stock
biomass (B)
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A. Overfishing is occurring; stock is overfished

B. Overfishing is not occurring; stock is overfished

C. Overfishing is occurring; stock not overfished

D. Overfishing is not occurring; stock is not overfished

(www.nefsc.noaa.gov)




