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The endangered green sea turtle (Chelonia mydas; hereafter C. mydas) plays a crucial role in maintaining the balance of
marine ecosystems. However, its populations are highly vulnerable to various threats, including marine pollution. Rapa Nui
(Easter Island), an isolated location in the southeastern Pacific, provides vital foraging habitats for both morphotypes of
Pacific C. mydas (black and yellow). In this study, we examined the demographic structure (morphotype, life stage, sex) and
health status (based on blood analytes and mercury-Hg concentration) of C. mydas on Rapa Nui during 2018 and 2023.
Turtles from various life stages and sexes were observed, with a predominance of yellow morphotype juveniles, likely recently
recruited or emerging from brumation. Haematological analyses revealed low levels of several key analytes (e.g. cholesterol,
calcium, phosphorus, total protein, globulins), suggesting poor nutritional status, potentially related to the brumation process,
limited food availability or poor food quality in the region. Alterations in both red and white blood cell lines, including
anaemia and lymphopenia, indicate ongoing inflammatory states and infections, consistent with clinical observations. Rapa
Nui turtles exhibited some of the highest blood Hg concentrations globally. Abnormalities in blood profiles, along with
correlations between various analytes and blood Hg concentrations, suggest altered immune function and probable renal
and liver dysfunction, likely resulting from both natural and anthropogenic sources of this heavy metal. Additionally, a very
high body condition index in turtles with carapace lesions suggests a negative impact from human food subsidies in local
bays, particularly from high-trophic-level fish, which may also serve as a pathway for Hg accumulation, both for the turtle
aggregation and the human population. Our findings underscore the urgent need for long-term mercury monitoring and
turtle movement studies to identify pollution sources, inform effective conservation strategies for this endangered species,
and address potential public health concerns on this remote Pacific island.
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Lay Summary

Green sea turtles on Rapa Nui show high blood mercury levels and poor nutritional status, likely due to limited food
availability and poor quality. Blood profiles indicate potential immune and organ dysfunction. These turtles face natural
and human-related stressors, emphasizing the need for mercury monitoring and local conservation efforts.
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Introduction
Rapa Nui (Easter Island) is a remote southeastern Pacific
Island recognized as a centre of biodiversity and endemism
(Roberts et al., 2002) and declared a World Heritage Site
by the United Nations Educational, Scientific and Cultural
Organization in 1995 (Álvarez-Varas et al., 2015). It is located
in the centre of the South Pacific Gyre, being mostly affected
by climatic drivers such as El Niño-Southern Oscillation
(ENSO), the Southern Annular Mode and the Decadal and
Inter-decadal Pacific Oscillation (Quilliam et al., 2014).

Easter Island provides developmental and foraging habi-
tats for four of five sea turtle species reported in the East-
ern Pacific Region: loggerhead (Caretta caretta), leatherback
(Dermochelys coriacea), hawksbill (Eretmochelys imbricata),
and green sea turtle (Chelonia mydas). Chelonia mydas is
an endangered species whose nesting rookeries are in trop-
ical and subtropical areas, but its foraging grounds extend
to temperate zones at high latitudes in both hemispheres
(Alvarez Varas et al., 2017; Dutton et al., 2019). In Rapa Nui,
this species is the most common in coral reefs and coastal
areas and has been increasingly studied over the past decade
(Álvarez-Varas et al., 2015, 2021a, 2021b, 2022).

Sea turtles play a critical ecological role in maintaining the
balance of marine and coastal ecosystems. In particular, green
sea turtles contribute to reef resilience by grazing on algae,
which prevents overgrowth and supports coral health (Wab-
nitz et al., 2010; Goatley et al., 2012). Additionally, their graz-
ing activity is essential for sustaining the health and productiv-
ity of seagrass meadows, promoting regrowth and maintain-
ing biodiversity (Moran and Bjorndal, 2005; Kuiper-Linley
et al., 2007). They also act as nutrient transporters between
coastal habitats, enriching oligotrophic ecosystems through
nutrient redistribution (Vander Zanden et al., 2012), and
serve as important prey for large sharks, integrating them
into complex marine food webs (Simpfendorfer et al., 2001;
Heithaus et al., 2002). Given their ecological significance, the

conservation of green turtles is essential not only for their
survival but also for maintaining the stability and health of
marine ecosystems globally.

A considerable number of studies have shown that chemi-
cal pollutants can significantly impact the survival of marine
populations; however, their effects on sea turtle populations
remain largely unknown (Finlayson et al., 2016; Arienzo,
2023; Dias et al., 2024; White-Kiely et al., 2024). To date,
most research has focused on measuring contaminant concen-
trations in turtle tissues, such as blood, shell, liver, kidneys,
brain and eggs, while relatively few studies have examined
their impact on the health of individuals and populations
(Finlayson et al., 2016; Arienzo, 2023; Dias et al., 2024).

Mercury (Hg) is a highly toxic heavy metal with no known
biological function, which bioaccumulates and biomagnifies
up the trophic webs (Day et al., 2007; Rodriguez et al.,
2022). It occurs in three forms in the environment: elemental
(metallic), inorganic (e.g. mercury salts) and organometallic
(e.g. methylmercury-MeHg). Its organic form, MeHg, is of
greater biological concern, as it is more efficiently absorbed
and accumulated into tissues and organs than other forms
of Hg, and in marine organisms enters the body mainly
through their diet, constituting over 90% of total mercury
(THg) (Kershaw and Hall, 2019; UNEP, 2019; Chételat et al.,
2020). Among its toxic effects are growth and development
alterations, decreased reproductive success, impaired vision
and hearing, liver and kidney damage, neurotoxicity and
immunotoxicity (Day et al., 2007; Perrault et al., 2011). Also,
it may produce widespread subtle, subclinical effects, such
as neurochemical and neurobehavioral changes, changes in
blood parameters, enzyme production, cardiovascular func-
tion and immune response (Boening, 2000; Basu and Head,
2010; Krey et al., 2015).

Mercury is released into the atmosphere by natural emis-
sion sources such as volcanoes, geothermal vents, and Hg-
enriched soil, as well as by anthropogenic activities including
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mine tailings, agricultural drain water, paper mills, fossil fuel
burning, waste disposal and the chlorine industry (Wolfe
et al., 1998; Berlin et al., 2007; Pérez-Rodríguez et al., 2018).
Anthropogenic emissions have altered mercury natural bio-
geochemical cycle and have increased over three times its
global surface ocean water concentrations in the last century
(UNEP, 2013, 2019; Obrist et al., 2018). Coastal water mer-
cury concentrations on Rapa Nui are unknown; however, a
recent study reported elevated natural mercury levels in peat
samples from Rano Aroi lake crater, likely originating from
atmospheric deposition, and volcanic activity, among other
factors (Pérez-Rodríguez et al., 2018).

In 2018, the first population monitoring of the C. mydas
aggregation in Rapa Nui was conducted. The turtles exhibited
variable body condition, with some individuals appearing
dehydrated and emaciated, showing signs of fishing gear inter-
actions and lesions consistent with bacterial, fungal, and/or
viral infections. Additionally, 50% of the turtles (n = 10)
showed carapace wounds likely caused by boat propellers
(Álvarez-Varas et al., 2022). Hand-feeding of turtles by fisher-
men and tourists has been reported as a common practice on
the island, primarily involving high trophic level species such
as tuna (Thunnus albacares) and dolphinfish (Coryphaena
hippurus) (Álvarez-Varas et al., 2015). This practice may lead
to behavioural changes, altered growth rates, and an increased
predisposition to conditions such as obesity, malnutrition,
liver and kidney diseases, diabetes mellitus, and cardiovascu-
lar disorders. Additionally, it may represent a pathway for the
introduction of contaminants that bioaccumulate through the
food chain (Álvarez-Varas et al., 2015, 2022).

Given this background, in the present study, we analysed
the demographic structure and health status of the C. mydas
foraging aggregation in Rapa Nui (Easter Island), integrating
data from 2018 and 2023. For the first time, we evaluated
blood mercury concentrations and their potential impact on
this endangered species on the island. In addition to providing
key biological and health information, this study underscores
the need to monitor a globally significant ecotoxicological
pollutant on a remote South Pacific island.

Materials and methods
Study area and turtle capture
This study was carried out in the bays of Hanga Roa (27◦99′S
109◦269′W) and Hanga Piko (27◦91′S 109◦46′W), Rapa
Nui (Easter Island), located in the southwest of the island,
3700 km offshore the Valparaíso Region, Chile (Fig. 1).

Two genetic lineages of C. mydas are present in Rapa
Nui: the north-central/eastern Pacific lineage (black turtle)
and the south-central/western Pacific lineage (yellow turtle)
(Álvarez-Varas et al., 2021a, 2021b). These lineages differ in
body shape, coloration and dietary preferences (Parker et al.,
2011; Amorocho et al., 2012; Álvarez-Varas et al., 2015,
2019, 2021a). In their benthic juvenile and adult stages, black

turtles are primarily omnivorous (Amorocho et al., 2012;
Turner Tomaszewicz et al., 2018), while adult yellow turtles
have been reported to feed mainly on algae and seagrasses,
with invertebrates consumed to a lesser extent (Burkholder
et al., 2011; Prior et al., 2016; Sampson et al., 2018). As
observed in other foraging locations (Stewart et al., 2016;
Turner Tomaszewicz et al., 2018), both lineages (or morpho-
types) in Rapa Nui are commonly provisioned by local fishers
and visitors primarily using fish discards (Álvarez-Varas et al.,
2015, 2022).

Local trained divers performed fifty manual captures cor-
responding to distinct forty-five C. mydas individuals in the
bays of Hanga Roa and Hanga Piko during November 2018
and August 2023. In all cases, turtles remained out of the
water for less than 40 min. In 2018, prior to release, turtles
were tagged on each front flipper using Inconel tags (National
Band and Tag Company, Newport, USA) (Zárate et al., 2013).
In 2023, no tagging was performed due to the damage caused
by the tags used previously (mainly associated with poor
cicatrization and algae accumulation in the insertion area). To
avoid recaptures in 2023, individuals were identified through
external marks and lesions in the head, carapace and flippers.
Individuals were monitored only once. Body measurements,
weight and blood samples were collected. Captures were
authorized by the Chilean Sub-Secretariat of Fishing (SUB-
PESCA, by its Spanish abbreviation), through a Research
Capture Permit (Exempt Resolution N◦ 3755 and E-2023-
492). Additionally, captures were authorized by the local
community through the ‘Koro Nui o te Vaikava’ (Rapa Nui
Sea Council) and the Hanga Roa and Hanga Piko fishermen’s
unions.

Morphotype, life stage and sexing
Morphotype classification was based on external characters
including carapace shape, and carapace and plastron pigmen-
tation. We assigned a yellow morphotype if the turtle had an
oval carapace ranging from light to dark brown in coloration
and if the plastron was cream to orange in coloration. Turtles
with a domed heart-shaped carapace black to black-grey,
and a greyish plastron were classified as black morphotype
(Parker et al., 2011; Amorocho et al., 2012; Álvarez-Varas
et al., 2021a, 2021b, 2022).

Straight carapace length notch to tip (SCLn-t; hereafter
SCL), curved carapace length notch to tip (CCLn-t; hereafter
CCL) and tail total length (TTL) were measured for each
turtle (Bolten, 1999). Curved and straight measurements were
obtained using a metric tape and a calibrated forester’s cal-
liper (0.1 cm, straight measurements), respectively. Body mass
was obtained using a digital scale (± 0.1 kg).

The individual’s life stage (juvenile/adult) was based on
the putative natal origin of each morphotype according to
Álvarez-Varas et al. (2022), corresponding to Galapagos for
black turtles and French Polynesia for yellow turtles. In
both cases, the cutoff was set at 85 cm CCL, as this is the
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Figure 1: Map of the study area (Easter Island). The points indicate the locations of Hanga Roa and Hanga Piko bays, where green turtles (C.
mydas) were sampled during 2018 and 2023

average CCL of nesting females in both the Galapagos and
French Polynesia. Thus, individuals with CCL < 85 cm were
classified as juveniles and CCL ≥ 85 cm as adults (Zárate
et al., 2013; Dolfo et al., 2023). Turtles with TTL ≥ 25 cm
were classified as males (McFadden et al., 2014).

Physical examination and BCI estimation
Physical examination was carried out by a veterinarian fol-
lowing the protocol detailed in Álvarez-Varas et al. (2022).
Briefly, the examination involved a visual assessment from
proximal to caudal, inspecting the eyes, ears, nasal cavity
and oral cavity for lesions, trauma or foreign materials. The
carapace and plastron were evaluated for firmness, injuries
and epibionts, which were removed if possible. Mobility,
muscle tone, and flipper strength were assessed, along with
any signs of inflammation, deformities or damage. The tail

and cloaca were checked for foreign materials, masses or
prolapse. Furthermore, a body condition index (BCI = [body
mass/SCLn-t3] × 10 000) (Bjorndal et al., 2000; Koch et al.,
2007; Álvarez-Varas et al., 2021b) was calculated to evaluate
the relative “fatness” of turtles. This index was used as
an indirect predictor of the nutritional status and/or health
condition of animals (Koch et al., 2007; Alvarez Varas et al.,
2017).

Blood count and blood chemistry analyses
Blood samples were collected from the dorsal cervical sinus
and stored at refrigeration (4◦C) or freezing (−20◦C) tem-
peratures depending on the analysis. In both cases, the cold
chain was maintained using dry ice from Easter Island to
the laboratory. Samples for blood count (4 ml) were stored
in heparinized tubes (sodium heparin) at 4◦C. The complete
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blood count was performed by manual counting. The packed
cell volume (PCV%) was obtained using a microhaematocrit
tube, where capillaries were prepared with 3/4 of heparinized
blood and centrifuged for 5 min at 5000 rpm (2800 g).
Results were obtained by measurement of each capillary.
Haemoglobin (HB) was measured using a haematology anal-
yser (Mindray BC. 2800 VET). The erythrocyte count (red
blood cells, RBC) was performed manually using modified
Neubauer haemocytometer chamber (central grid of 5 × 5
lines), with a Natt and Herrick solution as diluent. Mean
corpuscular volume (MCV), mean corpuscular haemoglobin
(MCH) and mean corpuscular Hb concentration (MCHC)
were obtained according to Latimer (2011). For the absolute
leukocyte count (white blood cells, WBC), manual counting
with a modified Neubauer haemocytometer chamber and
a Natt and Herrick diluent was also used. The differential
count of leukocytes was performed from a blood smear (100
leukocytes with differentiation of heterophils, lymphocytes,
eosinophils, basophils, monocytes and azurophils). Thrombo-
cytes were also counted using a blood smear.

For blood chemistry analyses, blood (4 ml) was stored in a
tube without anticoagulant. Two ml of blood was centrifuged
at 5000 rpm (2800 g) for five min (Nuve nf 200 centrifuge)
within 12 h after collection to obtain serum. Serum was
stored at −20◦C for five days until analysis. The remaining
blood (2 ml) was frozen at −20◦C for mercury determi-
nation. Serum analytes, including alanine aminotransferase
(ALT), alkaline phosphatase (ALP), aspartate aminotrans-
ferase (AST), calcium (CA), cholesterol (CHOL), creatine
phosphokinase (CPK), creatinine (CREA), gamma glutamyl
transferase (GGT), phosphorus (PHOS), total protein (TP),
urea nitrogen (BUN), uric acid (URIC AC), albumin (ALB),
globulin (GLOB) and urea, were measured using a wet chem-
ical analyser (Mindray BS-200) following the manufacturer’s
specifications, warranty and quality control (QC). All analy-
ses were carried out at Laboratorio Clínico Veterinario SpVet,
Buin, Santiago, Chile.

Blood THg determination
From frozen blood without anticoagulant (2 ml), a total of
20 mg of clot was analysed using thermal decomposition,
amalgamation and atomic absorption with a double beam
Direct Mercury Analyser (DMA-evo80, Milestone, Sorisole
(BG)—Italy). The EPA Method 7473, where no pretreatment
of samples is needed for THg determination (Hg henceforth),
was developed (EPA, 1998). Mercury concentrations were
expressed in ppb wet weight (w.w.).

The quality assurance and QC (QA/QC) included blanks
every ten samples. Certified references materials (DORM-5,
fish protein certified reference material, National Research
Council Canada) was used at the beginning and end of
each batch of samples analysed, to confirm that sample
combustion and minimize contamination, and random
duplicates to confirm minimum variability between samples.
Limit of detection (LoD) of the instrument is 0.0003 ng

Hg; LoD and limit of quantitation (LoQ) were 0,0022 and
0.0065 ng, respectively. Reference material recovery average
88.43% ± 3.5 (SE; range 84.96–91.91%). Final concentra-
tion was corrected using blanks and percentage of recovery
for each batch of samples (EPA, 1998). Analyses were carried
out at the Laboratory of Biogeochemistry of Contaminants
and Aquatic Ecotoxicology (BEA), Universidad Andrés Bello,
Santiago, Chile.

Statistical analysis
Means, standard deviations (SD) and ranges were calcu-
lated for morphological data, BCI, haematological parameters
(blood count and blood chemistry analyses) and blood Hg
concentrations. After verifying the normal distribution of the
data using the univariate normality test (Anderson-Darling)
and Levene’s test, a parametric analysis of variance (ANOVA)
was performed to assess differences between morphotypes,
life stages, and years for SCL and BCI (given that both are
comparable measurements related to the size and condition
of the animals). Statistical analyses for this section were
conducted using the car, nortest and vegan libraries. Addi-
tionally, a Student’s t-test was used to analyse differences in
BCI between turtles with and without carapace damage. The
results were graphically represented using a box plot created
with the ggplot2 library.

For blood Hg concentrations and their relationship with
haematological variables, the variance inflation factor (VIF)
was used to identify and mitigate collinearity issues among
the analytes and Hg concentrations (Zuur et al., 2010). The
resulting variables were subjected to the Shapiro–Wilk nor-
mality test. Subsequently, a multivariate analysis of vari-
ance based on permutations (PERMANOVA) was performed,
using Gower’s distance as the dissimilarity metric and 999
permutations to assess the statistical significance of the asso-
ciations between haematological variables and mercury lev-
els. Additionally, an exploratory heatmap was generated to
visualize potential correlations between the variables resulting
from the VIF analysis, blood mercury concentrations, SCL
and BCI. Since more than half of the variables did not follow
a normal distribution, Spearman’s correlation was used to
assess relationships between them. The heatmap was created
using the ggplot2, reshape2 and Hmiss libraries. All statistical
analyses were conducted in RStudio version 2024.12.0.467.

Ethical statement
All procedures were approved by the Scientific Ethical Com-
mittee of the Universidad Católica del Norte, Coquimbo,
Chile (CEC UCN N◦15, 2021).

Results
Morphotype, life stage and sexing
A total of 20 C. mydas individuals were captured in 2018,
15 (75%) corresponded to the yellow morphotype and five
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Table 1: Morphometric data, mass and BCI (mean ± SD) of both C. mydas morphotypes from Rapa Nui captured in 2018 and 2023

Parameter
Yellow morphotype (n = 35) Black morphotype (n = 9) All (n = 44)

Mean ± SD Range Mean ± SD Range Mean ± SD Range

SCL 57.20 ± 12.76 40.00–91.50 67.13 ± 11.64 54.80–87.00 59.53 ± 13.10 40.00–91.50

CCL 61.92 ± 14.69 43.10–102.00 76.23 ± 11.79 60.30–93.50 65.03 ± 15.14 43.10–102.00

TTL 11.42 ± 4.35 7.40–30.40 14.56 ± 3.43 10.40–20.00 12.25 ± 5.19 7.40–33.30

Mass 33.77 ± 27.22 9.30–138.00 60.88 ± 30.64 21.50–107.00 39.43 ± 30.02 9.30–138.00

BCI 1.66 ± 0.26 1.11–2.37 1.67 ± 0.21 1.28–1.90 1.66 ± 0.25 1.11–2.37

(25%) to the black. In 2023, 30 turtles were captured on the
island, 23 (76.7%) were yellow turtles and seven (23.3%)
were black. Of the total captured in both periods, 45 were
new individuals while five were recaptures; three of them were
yellow turtles and two were black. One turtle (classified as
black morphotype) was not included in the posterior analysis
due to missing morphological and haematological data. For
the recaptures, the morphometric variables (including mass
and BCI) were averaged between the two years. Details on
measurements and biological data of each morphotype are
shown in Table 1.

In 2018, 16 turtles (80%) were classified as juveniles and
four as adults (20%, three females, one male). In 2023, 25
individuals (83.3%) corresponded to juveniles and four to
adults (16.7%, two females, two males). Overall, for both
periods and both morphotypes, the study area was domi-
nated by small turtles with individuals varying between 40
and 70 cm SCL (Fig. 2). The SCL varied between 40.0 and
91.50 cm (mean of 59.53 ± 13.10 cm) with weights between
9.3 and 138.0 kg (mean of 39.43 ± 30.02 kg; Table 1).

Yellow turtles were significantly smaller than black ones
(P = 0.006837) and individuals from 2018 were significantly
larger than those from 2023 (P = 0.0003774), regardless of the
morphotype (Fig. 2). Nevertheless, the interaction between
morphotype/year was not significant (P = 0.197811).

Physical examination and BCI
In 2018, physical examination of turtles showed variable
body condition with some turtles apparently dehydrated and
emaciated, exhibiting signs of fishing gear interaction, and
lesions congruent with bacterial, fungal and/or viral infec-
tions. No epibionts on carapace nor skin were observed (see
Álvarez-Varas et al., 2022 for further details). Fifty percent
of sampled individuals (n = 10) had carapace lesions likely
due to boat collisions (Álvarez-Varas et al., 2022). In 2023,
turtles also had variable body condition, without presence
of epibionts (but with previous epibiont scars), nor fishing
gear interaction signs. Nevertheless, eight individuals (26.7%,
n = 30) showed carapace scars, and one of them exhibited
a deep fracture in the posterior carapace region resulting in
severe buoyancy alteration. On the other hand, a turtle who
exits the water every day for sunbathing in Hanga Piko bay

(Fig. 1) was examined. This turtle had deep, healed lesions
on its carapace, poor body condition with a high amount
of body fat in the neck, flippers, and inguinal area, and
numerous lesions and unhealed wounds on its soft parts
(including the head). Most small juveniles (ranging from 40.8
to 47.3 cm SCL, n = 5) exhibited a large amount of algae
on their carapace, plastron and flippers; they appeared to
be dehydrated and visibly showed very poor body condition.
Four individuals from 2023 (13.3%) exhibited lesions on
head, eyes, flippers and cloaca, congruent with infectious
agents.

BCI ranged between 1.11 and 2.37 (mean of 1.66 ± 0.26)
and between 1.28 and 1.90 (mean of 1.67 ± 0.21) for
yellow and black turtles, respectively. For turtles from
2018 and 2023, BCI ranged between 1.62 and 2.37 (mean
of 1.81 ± 0.19) and between 1.11 and 2.15 (mean of
1.54 ± 0.22), respectively. Significant differences were found
in BCI between years (P = 0.0003774; Fig. 3) and for the
interaction between morphotype/life stage (P = 0.02637).

When comparing the BCI between turtles with carapace
damage and those without (n = 14, including both study
years), significant differences were found between the groups
(P = 0.03814; Fig. 4), with higher BCI values in the turtles
with damage (mean of 1.79 ± 0.29 and 1.60 ± 0.22 for turtles
with and without carapace damage, respectively).

Haematological analyses, mercury
concentrations and correlation between
biological parameters
Blood count analyses (n = 14) showed only four individu-
als (28.6%) had normal erythrocyte (red series) and leuko-
cyte (white series) morphology. Forty-three percent of turtles
(n = 6) exhibited a PCV%, RBC and HB concentration below
limits reported for the species (Table 2). These individuals
were all juveniles and showed higher levels of MCV and
MCH, indicating macrocytic hyperchromic anaemia (Stacy
et al., 2011).

Some of them also presented polychromatic erythrocytes
(immature red blood cells), anisocytosis (red blood cells that
vary in size) and poikilocytosis (red blood cells with abnormal
shapes); one exhibited azurophils, and all of them exhibited
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Figure 2: Histogram of the straight carapace length notch to tip (SCL) for both Pacific C. mydas morphotypes from Rapa Nui in 2018 and 2023

Figure 3: Box plots of the body condition index (BCI) for both Pacific C. mydas morphotypes from Rapa Nui in 2018 and 2023

the presence of toxic heterophils. Overall, the number of lym-
phocytes were below those reported for healthy green turtles
(Table 2) and were similar to unhealthy individuals (Table 2;
March et al., 2018). Values of eosinophils and basophils
were below those reported in other studies and heterophiles,
monocytes and WBC were within range. However, in many
cases, the intervals were widely variable (Table 2).

Blood chemical analyses (n = 21) resulted in low levels
of ALP, cholesterol, creatinine, calcium, phosphorus, total
protein and globulins (Table 2). Values of BUN and CPK were
above those reported in most green turtle studies (Table 2).
The rest of parameters were within range reported for the
species (Table 2). Mean values, SD and range of haematolog-
ical parameters are shown in Table 2.
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Figure 4: Box plots of the body condition index (BCI) for C. mydas individuals with and without carapace damage from Rapa Nui in 2018 and 2023

VGA levels were correlated with VCM (r2 = −0.776;
P = 0.001), and CHCM was correlated with cholesterol
(r2 = 0.657; P = 0.011). Basophil values were correlated
with eosinophils (r2 = 0.723; P = 0.003), calcium (r2 = 0.698;
P = 0.006), creatinine (r2 = −0.579; P = 0.030) and BCI
(r2 = 0.693; P = 0.026). Monocytes were correlated with
AST (r2 = 0.666; P = 0.009), AP (r2 = 0.643; P = 0.013), and
lymphocytes (r2 = 0.604; P = 0.022). Lymphocytes were also
correlated with AP (r2 = 0.623; P = 0.017). Eosinophil and
heterophil values were correlated with calcium (r2 = 0.564;
P = 0.036 for eosinophils and r2 = −0.707; P = 0.005 for
heterophils). Eosinophils were also correlated with BCI
(r2 = 0.869; P = 0.000).

Among the biochemical profile analytes, UREA levels
were correlated with calcium (r2 = −0.558; P = 0.009),
GGT (r2 = −0.598; P = 0.004), AST (r2 = 0.583; P = 0.006)
and BCI (r2 = −0.579; P = 0.019). AST was also corre-
lated with ALP (r2 = −0.579; P = 0.006) and globulins
(r2 = 0.458; P = 0.037). GGT values were correlated with
SCL (r2 = −0.468; P = 0.032) and BCI (r2 = 0.525; P = 0.037).
Globulins were correlated with cholesterol (r2 = 0.442;
P = 0.045), creatinine with calcium (r2 = −0.435; P = 0.049),
and ALP with CPK values (r2 = 0.447; P = 0.042). Cholesterol
values were also correlated with SCL (r2 = 0.505; P = 0.019).

Although most individuals exhibited Hg levels below limits
of detection (n = 14); seven turtles showed concentrations of
this nonessential element in blood. The mean value of Hg was
93.03 ± 53.77 ppb w.w. (SE) with a range between < LoQ and
338.21 ppb w.w. (Table 3). All these turtles were juveniles,
six of them were yellow and one was black. Given the
small sample size (n = 7), correlation analyses between SCL,
BCI, haematological parameters, and mercury levels were

performed without considering morphotypes or life stage.
Mercury levels were positively correlated with UREA
(r2 = 0.639; P = 0.009) and AST (r2 = 0.450; P = 0.041) and
negatively correlated with calcium (r2 = −0.465; P = 0.034)
(Fig. 5).

Discussion
Chelonia mydas play a crucial role in marine ecosystems but
are highly vulnerable to threats such as pollution (Finlayson
et al., 2016; Dias et al., 2024). Mercury pollution, though a
significant concern, remains understudied in relation to the
health and survival of this species (Komoroske et al., 2011;
Perrault et al., 2017a; Rodriguez et al., 2022). Investigating
the effects of Hg across different regions is critical not only
for developing effective conservation strategies but also
for understanding the broader impacts of environmental
contamination on marine biodiversity, ecosystems and public
health (Landrigan et al., 2020). Furthermore, understanding
the demographic structure and health of sea turtles is
essential for designing targeted, locally adapted management
strategies, particularly for endangered species like C. mydas
(Joseph et al., 2023).

This study examines the C. mydas aggregation in Rapa
Nui, a remote area where anthropogenic pressures inter-
sect with unique environmental factors (Álvarez-Varas et al.,
2015, 2022). Our findings offer valuable insights into the
health and demographic characteristics of this group, which
are crucial for local species management strategies. They
also emphasize the need for systematic Hg monitoring in the
environment, turtles and the Rapa Nui human population.
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Figure 5: Heatmap representing the relationship between straight carapace length notch to tip (SCL), body condition index (BCI),
haematological parameters and blood mercury concentrations (Hg) in C. mydas from Rapa Nui. ∗ P- values ≤ 0.05

Potential factors influencing turtle arrival to
Rapa Nui waters
Rapa Nui C. mydas aggregation is composed of juveniles
and adults of both Pacific morphotypes (Álvarez-Varas et al.,
2021a, 2021b), with dominance of yellow morphotype tur-
tles. A recent study of this species on the island suggested
that the most likely natal origin of the yellow morphotype is
French Polynesia, located ∼4200 km from Rapa Nui. Black
turtles probably come from Galapagos, Ecuador, situated
∼3580 km away (Álvarez-Varas et al., 2022). Several studies
have proposed that foraging area selection by adult and
juvenile sea turtles is influenced by factors such as relative
size of nesting populations, distance between nesting and
foraging locations, surface water temperature, and offshore
currents (Lahanas et al., 1998; Luke et al., 2004; Jensen
et al., 2020). In the South Pacific Ocean, the main current
is the counter-clockwise South Pacific Subtropical Gyre, com-
prising four prevailing counter-clockwise currents: the north-
ern South Equatorial Current, the western East Australian
Current, the southern South Pacific Current and the eastern
Humboldt Current (Schneider et al., 2007). This circular
Gyre has numerous mirroring currents that circle downward

within the main Gyre (Glynn et al., 2003; Schneider et al.,
2007). Although the straightline distance from Galapagos
to Rapa Nui is less than from French Polynesia, these local
currents within the South Pacific Gyre could be facilitating
the arrival of yellow turtles from French Polynesia to Rapa
Nui to a larger extent. Black turtle dispersal from Galapagos
also could be influenced by this main current system (South
Pacific Gyre), but given its counter-clockwise direction, turtle
displacement from this point would be slower and likely
take longer, which would justify the lesser presence of this
morphotype at the island. Factors such as the relative size
of nesting populations contributing individuals to Rapa Nui,
surface water temperatures and local surface currents should
be studied in detail in the future to understand how they
influence the arrival of turtles to this remote island in the
South Pacific.

Dominance of small juveniles and ENSO
influence: new arrivals or winter dormancy?
Both study periods (2018 and 2023) were conducted dur-
ing El Niño events with warmer surface waters (Santidrián
Tomillo et al., 2020), which could explain the arrival of

..........................................................................................................................................................

11

D
ow

nloaded from
 https://academ

ic.oup.com
/conphys/article/13/1/coaf019/8109547 by guest on 14 April 2025



..........................................................................................................................................................
Research Article Conservation Physiology • Volume 13 2025

turtles of variable sizes to the island (Quiñones et al., 2010;
Alvarez Varas et al., 2017). With the same capture effort (eight
days, eight hours per day and two trained divers capturing
all turtles accessing Hanga Roa bay), an apparently higher
abundance of turtles was detected in August 2023 (n = 30)
than in November 2018 (n = 20). This could be related to a
strong El Niño phase in 2023 and by contrast, a weak El Niño
event in 2018, which should be studied in further detail.

In August 2023, we captured a higher number of small
juveniles than in 2018. Sizes were between 40.8 and 47.3 cm
SCL; they exhibited their heads, carapaces and flippers
fully covered in algae and visually showed dehydration
and poor body condition. Furthermore, most of these
small juveniles exhibited altered haematological values with
macrocytic-hyperchromic regenerative anaemia, and presence
of azurophils and toxic heterophils, suggestive of ongoing
inflammatory process or infectious disease (Stacy et al., 2011,
2018). Small turtles with these characteristics may suggest
that they recently recruited to the island, as other studies
have reported that newly arrived juvenile turtles to coastal
foraging areas from the open ocean often are emaciated,
covered in barnacles, and in poor health and body condition
(Kubis et al., 2009; Pilcher et al., 2015).

Sampson et al. (2014) studied the size distribution and
body condition of black and yellow turtles from a foraging
aggregation in the Colombian Pacific. As in our study, the
size of recruitment in Colombia was 40.0 to 49.9 cm SCL for
both morphotypes, with more yellow than black turtles in this
size class, indicating a difference in the recruitment pattern.
Likewise, minimum size of turtle recruit into Rapa Nui coastal
foraging ground (∼40 cm SCL) is similar to other Pacific
aggregations such as Australia (40 to 50 cm CCL; Limpus,
2008); Hawaii (∼35 cm SCL; Arthur and Balazs, 2008), and
other Central, West and South Pacific islands (∼35 cm SCL;
Becker et al., 2019); but higher than Fijian turtles, which
recruit starting at ∼25 cm CCL (Piovano et al., 2020).

On the other hand, given the season (August 2023, austral
winter), it is possible that turtles with such characteristics
(fully covered in algae, dehydrated, with poor body con-
dition and altered haematological values) have just come
out of a brumation period. During brumation, also called
“winter dormancy,” turtles reduce their activity, movements,
and metabolism to tolerate low water temperatures (Fel-
ger et al., 1976; Vélez-Rubio et al., 2017, 2022). During
this phenomenon carapaces are often covered with benthic
community biota such as barnacles, hydrozoans, seaweed,
mussels and polychaetes (Reyes et al., 2020; Vélez-Rubio
et al., 2022). Most studies on brumation in green turtles
have reported that it occurs at SST below 12◦C (Felger
et al., 1976; Vélez-Rubio et al., 2017); however, sea surface
temperatures in Easter Island range from 19 to 25◦C (Glynn
et al., 2003). Stable isotope studies based on differences in
δ13C/δ15N values to differentiate resident versus recently
recruited turtles (Piovano et al., 2020), and analysis of local
benthic hard bottom invertebrates and algae (Vélez-Rubio

et al., 2022) could provide insights into whether these small
individuals are new arrivals or they are coming out of winter
dormancy.

Possible anthropogenic influences on the
body condition of Rapa Nui turtles with
carapace damage
In both study periods, we identified turtles with carapace
damage of varying severity (ranging from superficial wounds
to deep fractures) and stages of healing (recent or fully
cicatrized injuries). Most lesions appeared to result from
boat propeller strikes, as evidenced by ruptures, deformations
and parallel straight cuts or deep scratches on the carapace
(Denkinger et al., 2013; Himpson et al., 2023). Boat strikes
are a well-documented source of anthropogenic injuries in
marine turtles, especially in regions with high levels of boat
traffic (Barco et al., 2016; Himpson et al., 2023) such as Rapa
Nui (Álvarez-Varas et al., 2015, 2022).

Our results show significant differences in BCI between
turtles with carapace damage and those without, with higher
BCI values observed in the former group. In cases of acute
trauma due to boat strikes, it is likely that affected animals
die immediately, and postmortem examinations do not reveal
significant health alterations, often showing good body con-
dition (Barco et al., 2016). In contrast, turtles that survive the
impact are likely to experience disruptions in normal diving
and foraging behaviour, leading to anorexia and subsequent
declines in body condition (Work et al., 2015; Barco et al.,
2016; de Mello and Alvarez, 2020).

The highest BCI exhibited by Rapa Nui turtles showing
carapace damage may be due to reduced mobility, leading to
prolonged stays in the bay where they have access to artificial
feeding provided by fishermen and visitors (Álvarez-Varas
et al., 2015, 2022; Stewart et al., 2016). In fact, several turtles
with carapace damage had very high BCI values (greater than
2.0). Although it is not possible to determine if these values
are anomalous, as they are specific to each population, the
general BCI averages for healthy C. mydas Pacific populations
range between 1.35 and 1.66 (1.42, Seminoff et al., 2003;
1.35, Koch et al., 2007; 1.5, Velez-Zuazo et al., 2014; 1.64,
Fukuoka et al., 2015; 1.66, Alvarez Varas et al., 2017; 1.4,
Finlayson et al., 2022). Additionally, the study by Stewart
et al. (2016) compared a group that received supplemental
feeding as part of a tour off the coast of Barbados with an
unsupplemented group and observed that turtles in the sup-
plemented group had a higher BCI (1.4 vs 1.2 in supplemented
vs unsupplemented turtles). This suggests that food subsidies
in the bays may be negatively impacting the body condition
of injured animals, potentially leading to malnutrition or
excessive weight. A high-protein diet, combined with easily
accessible calorie sources, could contribute to obesity and
increase susceptibility to conditions such as hepatic lipidosis
(Stewart et al., 2016). Further research involving a larger sam-
ple of affected turtles will help confirm the pattern observed
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in this study. Expanding the study to include more turtles in
Rapa Nui will allow assessment of the impact of carapace
damage on haematological parameters, as well as other health
indicators, which could not be evaluated due to the small
sample size (n = 3 turtles with carapace damage and available
haematological data).

Haematological analyses suggest
compromised turtle health associated with
environmental stressors
In 2018, adults and juveniles exhibited lesions on their head,
eyes, flippers and cloaca consistent with infectious diseases
(Álvarez-Varas et al., 2022), prompting health monitoring
through blood analyses of this turtle aggregation in 2023.
Blood count analysis of Rapa Nui turtles revealed lymphope-
nia, characterized by a low count of eosinophils and basophils
(Table 2). Factors such as infectious diseases and nutritional
deficiencies are known to contribute to lymphopenia (Aguirre
et al., 1995; Montilla Fuenmayor et al., 2006; Steinberg and
Divers, 2020). Additionally, low lymphocyte counts may also
be linked to mercury exposure, which has been shown to
suppress immune function in loggerhead turtles (Day, 2003;
Day et al., 2007). Eosinopenia, on the other hand, could
result from variations in diet and parasite load, as observed
in loggerhead and green sea turtles (Stacy et al., 2011).
However, these findings, along with the observed basopae-
nia, could also be related to brumation periods in reptiles
(Strik et al., 2007).

Labrada-Martagón et al. (2010) suggested that elevated
levels of triglycerides, total protein, albumin and globulins,
coupled with good body condition in turtles, could indicate
a food-rich environment. Similarly, de Mello and Alvarez
(2020) found that green turtles in good body condition exhib-
ited higher serum levels of albumin, cholesterol, and phos-
phorus compared to those in fair body condition. In contrast,
low concentrations of calcium, potassium and phosphorus
in turtle blood samples may signal poor health within a
foraging aggregation (Labrada-Martagón et al., 2010). Blood
chemistry analyses of Rapa Nui turtles revealed low levels
of ALP, cholesterol, creatinine, calcium, phosphorus, total
protein and globulins (Table 2). These findings may reflect
limited food availability or poor food quality in the region
(Labrada-Martagón et al., 2010). Alternatively, the combina-
tion of these results with low RBC and HB levels may indicate
diseases or injuries that impair food intake, leading to poor
nutritional status (de Mello and Alvarez, 2020). Abnormal-
ities in both white and red blood cell lines (including lym-
phopenia, azurophils, eosinopenia, basopaenia, anaemia and
toxic heterophils), along with reduced calcium, phosphorus
and globulin levels and elevated CPK and BUN, suggest an
ongoing inflammatory and/or infectious process (Labrada–
Martagón et al., 2010; de Mello and Alvarez, 2020). These
findings are consistent with the carapace lesions and over-
all health status observed in several individuals analysed in
this study.

Potential sources of mercury pollution
affecting Rapa Nui turtles
Despite variations in methodology and blood matrices (e.g.
clot, RBC, whole blood), our results show higher blood mer-
cury concentrations (93.03 ppb; Table 3) than most global
studies on C. mydas, except for green turtles nesting on the
northern coast of the Sea of Oman, which had Hg levels of
160 ppb (Sinaei and Bolouki, 2017; Table 3). Differences in
mercury concentrations between species and populations are
likely due to differences in diet and/or local feeding (Perrault
et al., 2017a). For instance, studies have reported elevated
Hg concentrations in Georgia loggerheads, whose foraging
ground is geographically close to a superfund site and a coal
power plant (Day et al., 2005; Deem et al., 2009). A similar
situation could be occurring on the northern coast of the Sea
of Oman, where heavy metals are discharged into the marine
ecosystem from industrial and development projects (Sinaei
and Bolouki, 2017).

Rapa Nui is in the southeastern Pacific region where
multiple geological hotspots and active hydrothermal vents
exist (Hekinian et al., 1996; Gueguen et al., 2022). Only in the
area around Rapa Nui and Salas y Gómez islands, there are
over 3000 submarine volcanic structures (Rappaport, 1997).
Although no studies on Hg levels in coastal waters around the
island have been published, a recent investigation analysed
Hg concentrations in peat and vegetation samples from Rano
Aroi crater lake, and higher values than those recorded in
most peat records belonging to the industrial period were
found, highlighting that natural factors play a significant role
in Hg accumulation (Pérez-Rodríguez et al., 2018).

On the other hand, Rapa Nui has no industrial devel-
opment; however, the human population and number of
tourists visiting the island have increased considerably in
recent decades (Vera et al., 2022). The island does not
possess any wastewater treatment plants; many houses have
cesspools, a lower proportion use septic tanks as well as some
hotels and restaurants, but without any further treatment
(Zapata-Hernández et al., 2022). Both rainwater, gathered
through channels and collectors, and submarine groundwater
discharge could represent a potential route of land-derived
material inputs (e.g. sediments, sewage effluents and other
pollutants) into coastal ecosystems (Zapata-Hernández et al.,
2022). Thus, the elevated Hg concentrations present in
Rapa Nui turtles could be associated with local sources
of pollution, both natural and anthropogenic. Likewise,
long-range transport and accumulation of mercury within
the same hemisphere, influenced by the oceanographic
features of the Rapa Nui region, cannot be excluded
(Schneider et al., 2023).

Hand-feeding as a source of mercury
contamination in turtles of Rapa Nui
Hand-feeding turtles by fishermen with top predator fish
(e.g. tuna or swordfish) is a frequent practice in Rapa Nui,
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particularly in sheltered bays and ports (Álvarez-Varas et al.,
2015, 2022). This practice has also been reported in other
regions where fishermen provision foraging turtles with
fish offal discarded from their boats, such as in Barbados,
West Indies (Stewart et al., 2016) and the Canary Islands
(Monzón-Argüello et al., 2018). Similarly, stable isotope
studies have suggested a carnivorous diet for green turtles in
the epipelagic zone associated with fishery discards (Turner
Tomaszewicz et al., 2018). Although little is known about
the potential impacts of supplemental feeding on sea turtles,
recent studies have shown that provisioned turtles exhibit
not only behavioural and growth alterations but also changes
in blood biochemical markers related to health status and
increased pollutant loads (Lazar et al., 2011; Bezerra et al.,
2014; Stewart et al., 2016). Additionally, supplemental
feeding increases turtle tameness, which heightens their
vulnerability to unintended interactions with detrimental
human activities, such as bait poaching and watercraft strike
(Horrocks et al., 2007; Monzón-Argüello et al., 2018).

This local practice in Rapa Nui may also be contributing
to elevated Hg levels in the turtles. Monzón-Argüello et al.
(2018) studied green turtles from the Canary Islands and
found that an increase in prey consumption was associated
with abnormal levels of cholesterol, triglycerides and BUN, as
well as elevated concentrations of both organic and inorganic
pollutants, such as cadmium and lead. Similarly, based on con-
taminant and stable isotope analyses, Monzón-Argüello et al.
(2018) suggested that benthic feeding or herbivory resulted
in lower concentrations of organochlorine pesticides com-
pared to the consumption of pelagic fish and cephalopods.
Furthermore, cadmium concentrations were found to increase
with trophic level. While this study highlights the potential
impact of supplemental feeding with high-trophic-level fish
on pollutant accumulation in green turtles, further research is
needed to clarify the relationship between diet and contam-
inant concentrations in Rapa Nui turtles. These findings are
also critical from a public health perspective, given the high
levels of fish consumption within the local community.

The impact of mercury contamination on
the health of Rapa Nui turtles
Toxic effects of Hg have been linked to renal and hep-
atic damage, as well as reported neurotoxic, genotoxic and
immunotoxic effects in marine vertebrates (Perrault et al.,
2017a; Kershaw and Hall, 2019). Particularly in sea turtles,
studies have demonstrated that increased concentrations of
mercury in nesting females may have detrimental effects on
reproductive success (Perrault et al., 2013). Investigations ex
vivo and in vitro have confirmed a decrease of lymphocytes
and suppression of proliferative responses for B cells asso-
ciated with mercury exposure, suggesting negative impacts
of this element on sea turtle immune function (Day et al.,
2007). Likewise, Perrault et al. (2017b) suggested a possible
association with mercury and increased tumour growth in
green turtles afflicted with fibropapillomatosis. Although we

did not find a direct relationship between Hg and immuno-
suppressive biomarkers in Rapa Nui turtles, the presence
of lymphopenia, toxic heterophils, hypoproteinaemia (low
globulin and TP levels), elevated CPK and BUN levels, and
a correlation between ALP and lymphocytes suggests altered
immune function in these individuals (Aguirre et al., 1995;
Work et al., 2001; Day et al., 2007; Perrault et al., 2017a,
2021; McNally and Innis, 2020).

Adams et al. (2010) used quantifiable pathological and
biochemical indicators to investigate Hg-associated differ-
ences in marine fish from a highly contaminated site and
a reference area in Florida, USA. Liver histology revealed
pyknosis/necrosis, interstitial inflammation, and bile duct
hyperplasia exclusively in fish from the contaminated site.
Similarly, interstitial inflammation, glomerular dilatation and
thickening, and tubular degeneration and necrosis in renal
tissue were more frequently observed at the contaminated
site, demonstrating a significant impact of Hg on both organs
(Adams et al., 2010). In loggerhead turtles, a correlation has
been reported between BUN and Hg concentrations, which
has been interpreted as dietary exposure to the metal in
actively foraging individuals (Perrault et al., 2017a). Although
we did not find a direct relationship between BUN and
Hg, our results showed a positive correlation between urea
and Hg, along with elevated BUN levels in the turtles from
Rapa Nui. Urea is produced in some aquatic reptiles as a
primary nitrogenous waste product of protein catabolism
(Allender and Latney, 2016). Elevated urea levels are typically
associated with kidney failure, dehydration, a high-protein
diet or excessive protein breakdown (Delgado et al., 2011).
Given the low TP levels in our study, it is likely that the
observed relationship between urea and Hg, along with the
increased BUN, is not diet-related but rather indicative of
renal dysfunction. Similarly, a previous study in loggerhead
turtles reported increased CPK levels linked to Hg exposure,
likely associated with muscle and/or renal damage (Day et al.,
2007). The correlation between Hg and urea, along with the
elevated CPK and BUN levels suggesting renal damage, may
also be supported by hypocalcaemia, low creatinine levels,
and the correlations between creatinine and calcium, and Hg
and calcium, observed in the feeding aggregation of Rapa Nui
(Delgado et al., 2011; Allender and Latney, 2016).

In reptiles, AST is an enzyme primarily found in the kidneys
and, to a lesser extent, in the liver. It should be present in the
bloodstream at low concentrations (Tristan, 2008; Cannavac-
ciuolo, 2013). Elevated AST levels in circulation indicate renal
damage (Pagano et al., 2019). Additionally, in many reptiles,
increased AST levels coupled with decreased cholesterol may
suggest hepatocellular injury (Allender and Latney, 2016). In
marine turtles, elevated Hg concentrations are thought to lead
to lipid peroxidation, reducing cholesterol levels (Perrault
et al., 2017a). Thus, the positive correlation between AST and
Hg, along with low cholesterol levels observed in this study,
may indicate liver dysfunction linked to Hg exposure in Rapa
Nui turtles. However, these results should be interpreted with
caution given the small sample size of this study.
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Further research with a larger sample size will enhance
our understanding of Hg impacts on Rapa Nui turtles and
inform strategies to mitigate its effects on this isolated popu-
lation in the southeastern Pacific. Evaluating Hg levels in key
food sources, while accounting for variations in morphotype
and life stage, is crucial, as diet is the primary route of
Hg exposure. Additionally, monitoring Hg concentrations in
sediments, water columns, and particularly in leftover fish
in Hanga Roa, will provide a more comprehensive view of
environmental contamination and enable prompt mitigation
actions. Satellite tracking of turtle movements will also help
identify or rule out pollution sources and guide management
strategies. This is critical for public health on this tourist
island, where humans and turtles interact year-round. All of
this information will be essential for the implementation of
the Rapa Nui Multiple Uses Marine Protected Area, where C.
mydas is a conservation priority.
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